
ScrabbleGAN: Semi-Supervised Varying Length Handwritten Text Generation
Supplementary Materials

Sharon Fogel†, Hadar Averbuch-Elor§, Sarel Cohen, Shai Mazor† and Roee Litman†

† Amazon Rekognition, Israel § Cornell Tech, Cornell University

1. Visual Results

Adlai Stevenson

Lianne La Havas

Nelson DeMille

C.S Lewis

A.A. Milne, Winnie-the-Pooh

Plato

Mahatma Gandhi

Janet Fitch

Vikrmn Corpkshetra

Figure 1: Quotes about handwriting. All these examples
were originally one single image, and some where split into
several lines to fit one column.

Generating complete sentences is one application of the
varying length property of ScrabbleGAN, as can be seen in
the quotes about handwriting depicted in Figure 1. Each
quote was originally one single image, and was split into
several lines to fit one column.

2. Ablation Study
Ablation results. In Table 1 we provide results of a few
more ablation experiments, justifying selection of two more
components of our framework: the architecture of R and
the way the noise vector is fed into the network.

Modification WER[%] NED[%]
CNN [7] 11.68±0.2911.68±0.2911.68±0.29 3.74±0.103.74±0.103.74±0.10
CNN [7] + LSTM 13.80±0.30 5.30±0.13
CRNN 12.18±0.24 3.91 ± 0.08
CRNN + LSTM 12.31 ± 0.28 3.96± 0.17
ResNet + LSTM + Attn 12.27± 0.34 3.87± 0.09
CNN [7] w/o CBN [6] 12.46 ± 0.30 4.01± 0.09

Table 1: Ablation results on genrator and recognizer archi-
tecture, comparing HTR performance trained on different
synthetic datasets. Each such set was generated by a GAN
with different generator or recognizer architecture. See text
for details.

Recognizer architecture selection. We tested several op-
tions for the recognizer network R to be used during GAN
training. As mentioned in Section 3.3 in the main paper,
better HTR network will not necessarily do better for Scrab-
bleGAN. Rows 3 through 5 in Table 1 present three alter-
natives from the code provided by [2]. Surprisingly, the
‘weakest’ configuration of the three yields the best perfor-
mance, despite the fact it contains no recurrent sub network.
To push this observation even further, we used a recog-
nizer presented by [7], which contains a simple feed for-
ward backbone of seven convolutional layers with a bidirec-
tional LSTM on top. We tested this architecture with- and
without the LSTM module, and respectively present their

1



performance in rows 2 and 1 of Table 1. Indeed, this sim-
pler network helped the GAN generate the best images to be
used for HTR training. Alonso el al. [1] used gated CRNN
as their recognizerR, originally presented in [3]. Since this
is very similar to the CRNN presented in [2], and no imple-
mentation of [3] was provided, we chose not to include an
evaluation of this specific architecture.

GAN noise input selection. As we describe in Section 3
below, we do not feed class data into CBN layers. This
raised the option to remove these layer in favor of standard
BN layers. As we show in the bottom row in Table 1, doing
so adds about 1% to the WER score. Therefore, we opted
to use CBN layers in the generator.

3. Architecture Details
We now provide some more specific implementation de-

tails for the three modules that comprise ScrabbleGAN.

Parameter block 1 block 2 block 3
in channels† 8 4 2
out channels† 4 2 1
upsample width 2 2 2
upsample height 2 2 1
resolution 8 16 16
kernel1 3 3 3
kernel2 3 3 1

Table 2: Generator architecture parameters used in the
helper function G arch in the file BigGAN.py. † The
number of input and output channels is the default param-
eter ch=64 multiplied by the number of channels in the
table.

Parameter block 1 block 2 block 3 block 4
in channels? input nc 1 8 16
out channels† 1 8 16 16
downsample X X X ×
resolution 16 8 4 4

Table 3: Discriminator architecture parameters used in the
helper function D arch in the file BigGAN.py. ? The
number of input channels in the first block is the number
of channels in the image (in our case 1), and in the other
blocks it is the default parameter ch=64 multiplied by the
number of channels in the table. † The number of output
channels is the default parameter ch=64 multiplied by the
number of channels in the table.

Generator and discriminator. We based our implemen-
tation of D and G on the PyTorch version of BigGAN

[4]. The only modifications we made are in the file
BigGAN.py. We changed the architecture parameter
helpers G arch and D arch as described in Tables 2 and
3 respectively, in order to adjust the output patch to a size
of 16× 32 pixels per character. The code of the Generator
class was changed accordingly to work with different width
and height up-sampling parameters.

A few further modifications were made in the architec-
ture of G to accommodate our scheme of class conditional
generator. Unlike the original BigGAN [5] where one class
is used for the entire image, here different regions of the
image are conditioned on different classes (characters). Im-
posing this spacial condition in the first layer is easier since
there is no overlap between different characters. It is more
difficult, however, to feed this information directly into the
CBN layers in the following blocks, due to the receptive
fields overlap. For this reason, we only use the noise vec-
tors z2 through z4 with no class conditioning to the CBN
layers. More details about the input to the first layer appear
in the implementation details section in the paper.

Recognizer. For R we based our implementation on the
RCNN implementation by [7]. In light of the ablation pre-
sented in section 2, we decided to remove the Bi-LSTM
network.

References
[1] Eloi Alonso, Bastien Moysset, and Ronaldo Messina. Adver-

sarial generation of handwritten text images conditioned on
sequences. arXiv preprint arXiv:1903.00277, 2019. 2

[2] Jeonghun Baek, Geewook Kim, Junyeop Lee, Sungrae Park,
Dongyoon Han, Sangdoo Yun, Seong Joon Oh, and Hwalsuk
Lee. What is wrong with scene text recognition model com-
parisons? dataset and model analysis, 2019. 1, 2

[3] Théodore Bluche and Ronaldo Messina. Gated convolutional
recurrent neural networks for multilingual handwriting recog-
nition. In 2017 14th IAPR International Conference on Doc-
ument Analysis and Recognition (ICDAR), volume 1, pages
646–651. IEEE, 2017. 2

[4] Andy Brock and Alex Andonian, Biggan-pytorch,
https://github.com/ajbrock/BigGAN-PyTorch, 2019-11-
01. 2

[5] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis.
arXiv preprint arXiv:1809.11096, 2018. 2

[6] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur.
A learned representation for artistic style. 2017. 1

[7] Shu Liyang, Crnn-pytorch, https://github.com/-
Holmeyoung/crnn-pytorch, 2019-11-01. 1, 2


