
gDLS*: Generalized Pose-and-Scale Estimation Given Scale and Gravity Priors
Supplemental Material

Victor Fragoso
Microsoft

victor.fragoso@microsoft.com

Joseph DeGol
Microsoft

joseph.degol@microsoft.com

Gang Hua
Wormpex AI

ganghua@gmail.com

I. Introduction
In this document, we present the full mathematical

derivation of gDLS* shown in the main submission. This
derivation provides closed form equations that allow a user
to implement the proposed method.

II. Incorporating Priors via Regularizers
Section 3 of the main submission describes the proposed

formulation to include scale and rotation priors using regu-
larizers. This formulation is:

J ′ = J(R, t, s,α) + λs (s0 − s)2︸ ︷︷ ︸
Js

+λg‖gQ ×RgW‖2︸ ︷︷ ︸
Jg

,

(i)

where

J(R, t, s,α) =

n∑
i=1

‖αiri − (Rpi + t− sci) ‖2 (ii)

is the gDLS [2] pose-and-scale re-projection error cost
function from the n 2D-3D correspondences, Js is the scale
prior regularizer, and Jg is the gravity direction constraint
imposing a rotation prior.

II.i. Cost Function Depending Only on Rotation

As mentioned in Section 3, the first step to obtain a cost
function that we can minimize in a single shot is to rewrite
Eq. (i) as a function of the rotation matrix R. To do so, we
define

x =
[
α1 . . . αn s tᵀ

]ᵀ
, (iii)

a vector holding the depths for each i-th point αi, the scale
s, and translation vector t. We know that the optimal
depths, translation, and scale x? vanish the gradient ∇xJ

′

of the cost function J ′, i.e.,

∇xJ
′∣∣
x=x? = [∇xJ +∇xJs]x=x? = 0. (iv)

To satisfy this constraint, we calculate each of the gradients
∇xJ and∇xJs:

∇xJ = 2AᵀAx− 2AWb

∇xJs = 2Px− 2Px0,
(v)

where

A =

r1 c1 −I
. . .

...
...

rn cn −I

 ,b =

p1

...
pn


P =

0n×n λs
03×3

 ,W =

R . . .
R

 ,
(vi)

and x0 =
[
0ᵀn so 0

ᵀ
3

]ᵀ
. Note that

Js = λs (s0 − s)2 = (x− x0)
ᵀ
P (x− x0) . (vii)

Thus, we can rewrite Eq. (iv) into

∇xJ
′ = AᵀAx−AWb+ Px− Px0 = 0, (viii)

by combining Equations (iv) and (v). Rearranging terms of
Eq. (viii) yields Eq. (5) in the main submission, which is

x = (AᵀA+ P )
−1
AᵀWb+ (AᵀA+ P )

−1
Px0. (ix)

In order to obtain the simplified version of Eq. (ix) shown
in Eq. (5) of the main submission and inspired by [2], we
rewrite

AᵀA+ P =

[
In×n B′n×4
B′ᵀn×4 D′4×4

]

=

[
In×n Bn×4
Bᵀ

n×4 D4×4

]
︸ ︷︷ ︸

AᵀA

+

0n×n λs
03×3


︸ ︷︷ ︸

P

,

(x)

1



where

B =

r
ᵀ
1c1 −rᵀ1
...

...
rᵀncn −rᵀn


D =

[∑n
i=1 c

ᵀ
i ci

∑n
i=1−c

ᵀ
i∑n

i=1−ci nI

]
,

(xi)

and I is the identity matrix. It is important to mention that
AᵀA is exactly the same as that of gDLS [2], and thus

AᵀA+ P =

[
In×n Bn×4
Bᵀ

n×4 D′4×4

]
D′4×4 =

[
λs +

∑n
i=1 c

ᵀ
i ci

∑n
i=1−c

ᵀ
i∑n

i=1−ci nI

]
.

(xii)

Eq. (ix) requires the inverse of (AᵀA+ P )
−1. To com-

pute a closed form relationship, we use the following block
matrix expression

(AᵀA+ P )
−1

=

[
En×n Fn×4
G4×n H4×4

]
. (xiii)

Through block matrix inversion, we obtain the following
closed-form block matrices:

E = I +BHBᵀ

F = −BH
G = −HBᵀ

H = (D′ − Y )
−1

Y =

[∑n
i=1 c

ᵀ
i rir

ᵀ
i ci

∑n
i=1−c

ᵀ
i rir

ᵀ
i∑n

i=1−rir
ᵀ
i ci

∑n
i=1 rir

ᵀ
i

] (xiv)

Like in gDLS [2], we use matrices U , S, and V to sim-
plify Eq. (ix), i.e.,

(AᵀA+ P )−1Aᵀ =

US
V

 , (xv)

where

U =

r
ᵀ
1

. . .
rᵀn

+B

[
S
V

]
[
S
V

]
= −HBᵀ

r
ᵀ
1

. . .
rᵀn

+H

[
cᵀ1 . . . cᵀn
−I . . . −I

]

= H

[
cᵀ1 − c1r1r

ᵀ
1 . . . cᵀn − cnrnr

ᵀ
n

c1c
ᵀ
1 − I . . . cnc

ᵀ
n − I

]
.

(xvi)

We can simplify Eq. (ix) further. To do this, we focus on
simplifying the term encoding the scale prior, yielding

(AᵀA+ P )−1Px0 =

[
E F
G H

]0 λs
0


︸ ︷︷ ︸

P

 0
s0
0


︸ ︷︷ ︸
x0

= λss0

[
F1

B1

]
︸ ︷︷ ︸

l

,

(xvii)

where F1 andB1 are the first column of the matrix F andB,
respectively. Combining Equations (xvii) and (xv) allows
us to rewrite Eq. (ix) as follows:

x =

US
V

Wb+ λss0l, (xviii)

which is the bottom part of Eq. (5) in the main submission.
Eq. (xviii) provides a linear relationship between depths,
scale, and translation and the rotation matrix. The explicit
relationships are the following

αi(R) = uᵀ
iWb+ λssoli

s(R) = SWb+ λssoln+1

t(R) = VWb+ λssolt,

(xix)

where uᵀ
i is the i-th row of matrix U , lj is the j-th entry of

the vector l, and lt corresponds to the last three entries of
the vector l. Specifically, the entries of vector l are

l =


l1
...
ln

ln+1

lt

 =


F1,1

...
Fn,1

H1,1

H2:4,1

 , (xx)

where H2:4,1 represent the last three entries of the first col-
umn of H . We can use these explicit relationships (i.e.,
Eq. (i) and Eq. (xx)) to rewrite the main cost function as
one depending only on rotation parameters. To do so as
clearly as possible, we define



ei = αi(R)ri − (Rpi + t(R)− s(R)ci)
= (uᵀ

iWb+ λs0Fi,1) ri −Rpi

− (VWb+ λs0H2:4,1)

+ (SWb+ λs0H1,1) ci

= uᵀ
iWbri −Rpi − VWb+ SWbci︸ ︷︷ ︸

ηi

+ λs0 (Fi,1ri −H2:4,1 +H1,1qi)︸ ︷︷ ︸
ki

= ηi + ki

. (xxi)

As noted in gDLS [2] paper, ηi can be factored out as
follows:

ηi = (rir
ᵀ
i − I) (Rpi − SWbci + VWb)

= (rir
ᵀ
i − I)

[
L(pi) −ciSL(b) V L(b)

]︸ ︷︷ ︸
Mi

vec(R),

(xxii)

where vec(R) vectorizes a rotation matrix R, and L(z)
is a function that computes a matrix such that Rz =
L(z)vec(R). Since we use the rotation representation of
Upnp [1], i.e.,

vec(R) =
[
q21 q

2
2 q

2
3 q

2
4 q1q2 q1q3 q1q4 q2q3 q2q4 q3q4

]ᵀ
,

(xxiii)
then the function L(·) is

L(z)ᵀ =



z1 z2 z3
z1 −z2 −z3
−z1 z2 −z3
−z1 −z2 z3
0 −2z3 2z2
2z3 0 −2z1
−2z2 2z1 0
2z2 2z1 0
2z3 0 2z1
0 2z3 2z2


. (xxiv)

By substituting the relationships shown in Eq. (xix) and
the factorizations shown in Eq. (xxii) into Eq. (i), we obtain

the following relationships:

J ′gDLS =

n∑
i=1

eᵀi ei =

n∑
i=1

ηᵀ
i ηi + 2kᵀ

i ηi + kᵀ
i ki

=

n∑
i=1

vec(R)ᵀMᵀ
i Mivec(R) + 2kᵀ

iMivec(R) + kᵀ
i ki

= vec(R)ᵀ
(

n∑
i=1

Mᵀ
i Mi

)
︸ ︷︷ ︸

MgDLS

vec(R)+

2

(
n∑

i=1

kᵀ
iMi

)
︸ ︷︷ ︸

dᵀ
gDLS

vec(R) +
n∑

i=1

kᵀ
i ki︸ ︷︷ ︸

kgDLS

= vec(R)ᵀMgDLSvec(R) + 2dᵀ
gDLSvec(R) + kgDLS

;

(xxv)

J ′s = λs (s0 − s(R))2

= λs (SL(b)vec(R) + λss0H1,1 − s0)2

= vec(R)ᵀ (λsL(b)ᵀSᵀSL(b))︸ ︷︷ ︸
Ms

vec(R)+

2λs (s0 − λss0H1,1)SL(b)︸ ︷︷ ︸
dᵀ

s

vec(R)+

λs (λss0H1,1 − s0)2︸ ︷︷ ︸
ks

= vec(R)ᵀMsvec(R) + 2dᵀ
svec(R) + ks

; and (xxvi)

J ′g = λg‖gQ ×RgW‖2

= vec(R)ᵀ
(
λgL(gW)ᵀbgQcᵀ×bgQc×L(gW)

)︸ ︷︷ ︸
Mg

vec(R)

= vec(R)ᵀMgvec(R)

.

(xxvii)

The symbol b·c× indicates the skew symmetric matrix. By
putting together the components of the cost, we end up with
the final cost function

J ′ = J ′gDLS + J ′s + J ′g, (xxviii)

which is Eq. (10) in the main submission.

References
[1] L. Kneip, H. Li, and Y. Seo. Upnp: An optimal o(n) solution to the

absolute pose problem with universal applicability. In Proc. of the
European Conf. on Computer Vision (ECCV), 2014. 3

[2] C. Sweeney, V. Fragoso, T. Höllerer, and M. Turk. gDLS: A scalable
solution to the generalized pose and scale problem. In Proc. of the
European Conf. on Computer Vision (ECCV), 2014. 1, 2, 3


