
Supplementary Materials for: Discrete Model Compression with Resource
Constraint for Deep Neural Networks

A. Derivation of Regularization Gradient
The detail derivation of regularization gradient is given

below if T̂ 6= pT :

∂Rlog

∂θl,c
=

1

|T̂ − pT |+1
· T̂ − pT
|T̂ − pT |

·
∂
∑L
l=1

̂(FLOPs)l
∂θl,c

=
1

|T̂ − pT |+1
· T̂ − pT
|T̂ − pT |

·k2l ·
1Tgl−1
Gl

· wl · hl ·
∂1Tgl
∂θl,c

= ηl ·
1

|T̂ − pT |+1
· T̂ − pT
|T̂ − pT |

· ∂g(θl,c)
∂θl,c

= ηl ·
1

|T̂ − pT |+1
· T̂ − pT
|T̂ − pT |

,

where ηl = k2l ·
1T gl−1

Gl · wl · hl .The result of the second

line is due to the definition of ̂(FLOPs)l and ̂(FLOPs)l =

kl · kl · 1
T gl−1

Gl · 1Tgl · wl · hl. The result of the fourth line

is because of STE: ∂g(θl,c)θl,c
= 1, if θl,c ∈ [0, 1]. If T̂ = pT ,

then Rlog = 0, and 0 can be used as the subgrident of this
point. Thus, we have the sub-gradient given in the paper:

∂Rlog

∂θl,c
=

{
ηl · 1
|T̂−pT |+1 ·

T̂−pT
|T̂−pT | , if T̂ 6= pT

0, if T̂ = pT

B. Detailed Choice of p

Architecture ResNet-34 ResNet-50 ResNet-101 MobileNetV2
p 0.55 0.38 0.42 0.50

Table 1: Choice of p for ImageNet models. p is the re-
mained FLOPs divided by the total FLOPs

In this section, we will give the detail number of p. In
a CNN, we do not prune the first layer, the last layer and
residual connections in ResNet. As a result, the actual re-
mained FLOPs may not equal to p. We list the choice of p
for ImageNet models in Tab. 1. For CIFAR-10 models, the
unpruned FLOPs is quite small, thus, p is the same as the
remained fraction of FLOPs.

C. Acceleration
The cpu run time of different models are shown in Tab. 2.

The input is a mini-batch of 4 images.

Architecture ResNet-34 ResNet-50 ResNet-101 MobileNetV2
Original Time (ms/batch) 113.5 195.7 331.5 106.8
Pruned Time (ms/batch) 81.4 126.2 205.4 67.5

Improvement (%) 28.3% 35.5% 38.0% 36.8%
Pruned FLOPs (%) 43.4% 55.0% 56.0% 46.0%

Table 2: CPU time for different ImageNet Models. The
time is measured in millisecond.

D. Discussion of Difference between Proposed
Method and Trainable Gate [2]

In trainable gate (TG) [2], they propose to turn non-
differentiable gate to differentiable gate inspired by [1].
They add a perturbation to the gate function to make it dif-
ferentiable. Our method, on the other hand, does not modify
the gate function and use STE to handle gradient calcula-
tion. Thus, the approach of making gate differentiable is
different. Moreover, in their framework, the gate calcula-
tion is deterministic. Consequently, they can not sample
sub-networks as we do. Their work also applies a form
of constraint to limit the resource of the pruned neural net-
work.

References
[1] Sangchul Hahn and Heeyoul Choi. Gradient acceleration in

activation functions. 2018.
[2] Jaedeok Kim, Chiyoun Park, Hyun-Joo Jung, and Yoonsuck

Choe. Plug-in, trainable gate for streamlining arbitrary neural
networks. CoRR, abs/1904.10921, 2019.

1


