
Supplementary Material:
Learning Representations by Predicting Bags of Visual Words

Spyros Gidaris1 Andrei Bursuc1 Nikos Komodakis2 Patrick Pérez1 Matthieu Cord1

1Valeo.ai 2University of Crete

Figure 1: t-SNE [6] scatter plot of the learnt self-supervised fea-
tures on CIFAR-100. Each data point in the t-SNE scatter plot cor-
responds to the self-supervised feature representation of an image
from CIFAR-100 and is colored according to the class that this im-
age belongs to. To reduce clutter, we visualize the features extracted
from the images of 20 randomly selected classes of CIFAR-100.

A. Visualizations
A.1. Visualizing the word clusters

In Figure 2 we illustrate visual words used for training
our self-supervised method on ImageNet. Since we discover
visual words using k-means, to visualize a visual word we
depict the 16 patches with the smallest Euclidean distance
to the visual word cluster centroid. As can be noticed, visual
words encode mid-to-higher-level visual concepts.

A.2. t-SNE scatter plots of the learnt self-supervised
features

In Figure 1 we visualize the t-SNE [6] scatter plot of the
self-supervised features obtained when applying our method

Models Linear

BoWNet K = 512 69.76
BoWNet K = 1024 70.43
BoWNet K = 2048 71.01
BoWNet K = 4096 70.99

Table 1: CIFAR-100 linear classifier results with WRN-28-10.
Impact of vocabulary size. Here we used an initial version of our
method implemented with less aggressive augmentation techniques.

Method n =1 5 10 50 Linear

RotNet 58.3 74.8 78.3 81.9 60.3
BoWNet 69.1 86.3 89.2 92.4 71.5

Additional ablations
BoWNet - predict y(̃) 61.7 80.0 83.4 87.4 61.3
BoWNet - linear Ω(·) 70.4 85.6 88.3 90.7 63.3
BoWNet - binary 70.1 86.8 89.5 92.7 71.4

Table 2: CIFAR-100 linear classifier and few-shot results. For
these results we use the WRN-28-10.

to the CIFAR-100 dataset. For visualizations purposes, we
only plot the features corresponding to images that belong
to 20 (randomly selected) classes out of the 100 classes of
CIFAR-100. As can be clearly observed, the learnt features
form class-specific clusters, which indicates that they capture
semantic image information.

B. Additional experimental analysis

B.1. CIFAR-100 results

Here we provide an additional ablation analysis of our
method on the CIFAR-100 dataset. As in section §4.1 of
main paper, we use the WRN-28-10 [11] architecture.

Impact of vocabulary size. In Table 1 we report linear
classification results for different vocabulary sizes K. We
see that increasing the vocabulary size from K = 256 to
K = 2048 in CIFAR-100, offers obvious performance im-

1



Figure 2: Examples of visual word cluster members. The clusters are created by applying k-means on the feature maps
produced from the conv4 layer of the ResNet50. For each visual word cluster we depict the 16 patch members with the
smallest Euclidean distance to the visual word cluster centroid.



provements. Then, from K = 2048 to K = 4096, there is
no additional improvement.

Reparametrized linear layer for Ω(·). In section §2.3 of
main paper, we described the linear-plus-softmax prediction
layer Ω(·) implemented with a reparametrized version of the
standard linear layer. In this reparametrized version, instead
of directly applying the weight vectors W = [1, · · · ,K ] to
a feature vector Φ(̃), we first L2-normalize the weight vec-
tors, and then apply a unique learnable magnitude γ for all
the weight vectors (see equation (5) of main paper). The
goal is to avoid always favoring the most frequently occur-
ring words in the dataset by letting the linear layer of Ω(·)
learn a different magnitude for the weight vector of each
word (which is what happens in the case of the standard
linear layer). In terms of effect over the weight vector, this
reparametrization is similar with the power-law normaliza-
tion [8] used for mitigating the burstiness effect on BoW-like
representations [4]. Here, we examine the impact of the cho-
sen reparametrization by providing in Table 2 results for
the case of implementing Ω(·) with a standard linear layer
(entry BoWNet - linear). We see that with the standard linear
layer the performance of the BoWNet model deteriorates,
especially on the linear classification metric, which validates
our design of the Ω(·) layer.

Predicting y(̃) instead of y(). In our work, given a per-
turbed image ,̃ we train a convnet to predict the BoW repre-
sentation y() of the original image . The purpose of predict-
ing the BoW of the original image instead of the perturbed
one ,̃ is to force the convnet to learn perturbation-invariant
and context-aware features. We examine the impact of this
choice by providing in Table 2 results for when the convnet
is trained to predict the BoW of the perturbed image˜(entry
BoWNet - predict y(̃)). As expected, in this case there is a
significant drop in the BoWNet performance.

Histogram BoW vs Binary BoW In section §2.2 of main
paper, we described two ways for reducing the visual word
description of an image to a BoW representation. Those are,
(1) to count the number of times each word appears in the im-
age (see equation (3)), called Histogram BoW, and (2) to just
indicate for each word whether it appears in the image (see
equation (4)) [9, 5], called Binary BoW. In Table 2 we pro-
vide evaluation results with both the histogram version (entry
BoWNet) and the binary version (entry BoWNet - binary).
We see that they achieve very similar linear classification
and few-shot performance.

B.2. Small-scale experiments on ImageNet

Here we provide an additional experimental analysis of
our method on the ImageNet dataset. Specifically, we study

BoW from linear cls Vocabulary linear cls

conv3 42.08 K = 2048 45.38
conv4 45.38 K = 8192 46.03
conv5 40.37 K = 20000 46.45

Vocabulary size K = 2048 BoW from conv4

Table 3: ResNet18 small-scale experiments on ImageNet. Lin-
ear classifier results. The accuracy of the RotNet model used for
building the BoW representations is 37.61. The left section explores
the impact of the layer (of RotNet) that we use for building the
BoW representations (with K = 2048). The right section explores
the impact of the vocabulary size K (with BoW from the conv4).

the impact of the feature block of the base convnet and the
vocabulary size that are used for building the BoW represen-
tation. Due to the computationally intensive nature of Ima-
geNet, we analyze those aspects of our method by perform-
ing “small-scale” ImageNet experiments. By “small-scale”
we mean that we use the light-weight ResNet18 architecture
and we train using only 20% of ImageNet training images,
and for few epochs.

Implementation details. We train the self-supervised
models with SGD for 48 epochs. The learning rate is initial-
ized at 0.1 and dropped by a factor of 10 after 15, 30, and
45 epochs. The batch size is 200 and weight decay 5e− 4.

Evaluation protocols. We evaluate the learned self-
supervised representations by freezing them and then train-
ing on top of them 1000-way linear classifiers for the Ima-
geNet classification task. The linear classifier is applied on
top the feature map of the last residual block of ResNet18,
resized to 512× 4× 4 with adaptive average pooling. It is
trained with SGD for 60 epochs using a learning rate of 0.1
that is dropped by a factor of 10 every 20 epochs. The weight
decay is 1e− 3.

Results. We report results in Table 3. First, we study the
impact on the quality of the learned representations of the
RotNet feature block that is used for building the BoW rep-
resentation. In the left section of Table 3 we report results
for the cases of (a) conv3 (2nd residual block), (b) conv4
(3rd residual block), and conv5 (4th residual block). We
see that the best performance is for the conv4-based BoW.
Furthermore, in the right section of Table 3 we examine the
impact of the vocabulary size K on the quality of the learned
representations. We see that increasing the vocabulary size
from K = 2048 to K = 20000 leads to significant improve-
ment for the linear classifier. In contrast, in Table 1 with
results on CIFAR-100, we saw that increasing the vocabu-
lary size after K = 2048 does not improve the quality of the
learned representations. Therefore, it seems that the optimal
vocabulary size depends on the complexity of the dataset to
which we apply the BoW prediction task.



B.3. Full ImageNet and Places205 classification re-
sults

In Table 4 we provide the full experimental results of
our method on the ImageNet and Places205 classification
datasets.

C. Implementation details
C.1. Implementing RotNet

For the implementation of the rotation prediction network,
RotNet, we follow the description and settings from Gidaris
et al. [1]. RotNet is composed of a feature extractor Φ̂(·)
and a rotation prediction module. The rotation prediction
module gets as input the output feature maps of Φ̂(·) and is
implemented as a convnet. It consists of a block of residual
layers followed by global average pooling and a fully con-
nected classification layer. In the CIFAR-100 experiments
where Φ̂(·) is implemented with a WRN-28-10 architecture,
the residual block of the rotation prediction module has 4
residual layers (similar to the last residual block of WRN-
28-10), with 640 feature channels as input and output. In the
MiniImageNet experiments where Φ̂(·) is implemented with
a WRN-28-4 architecture, the residual block of the rotation
prediction module has again 4 residual layers, but with 256
feature channels as input and output. Finally, in ImageNet
experiments with ResNet50, the residual block of the rota-
tion prediction module has 1 residual layer with 2048 feature
channels as input and output.

During training for each image of a mini-batch, we gen-
erate its four rotated copies (0◦, 90◦, 180◦, and 270◦ 2D
rotations) and predict the rotation class of each copy. For su-
pervision we use the cross-entropy loss over the four rotation
classes.

After training we discard the rotation prediction module
and consider only the feature extractor Φ̂(·) for the next
stages, i.e. spatially dense descriptions and visual words.

C.2. Building BoW for self-supervised training

For the ImageNet experiments, given an image, we build
its target BoW representation using visual words extracted
from both the original and the horizontally flipped version
of the image. Also, for faster training we pre-cache the BoW
representations. Finally, in all experiments, when computing
the target BoW representation we ignore the visual words
that correspond to the feature vectors on the edge of the
feature maps.

C.3. Few-shot protocol

The typical pipeline in few-shot learning is to first train
a model on a set of base classes and then to evaluate it on a
different set of novel classes (each set of classes is split into
train and validation subsets). For MiniImageNet experiments

we use this protocol, as this dataset has three different splits
of classes: 64 training classes, 16 for validation, and 20 for
test. For the few-shot experiments on CIFAR-100 we do
not have such splits of classes and we adjust this protocol
by selecting a subset of 20 classes and sample from the
corresponding test images for evaluation. In this case, the
feature extractor Φ(·) is trained in a self-supervised manner
on train images from all 100 classes of CIFAR-100.

Few-shot models are evaluated over a large number of
few-shot tasks: we consider here 2, 000 tasks. The few-shot
evaluation tasks are formed by first sampling t categories
from the set of novel/evaluation classes and then selecting
randomly n training samples andm test samples per category.
The classification performance is measured on the t × m
test images and is averaged over all sampled few-shot tasks.
For few-shot experiments we use t = 5, m = 15, n ∈
{1, 5, 10, 50}.

References
[1] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsu-

pervised representation learning by predicting image rotations.
In Int. Conf. on Learning Representations, 2018. 4

[2] Priya Goyal, Dhruv Mahajan, Abhinav Gupta, and Ishan
Misra. Scaling and benchmarking self-supervised visual rep-
resentation learning. In Int. Conf. on Computer Vision, 2019.
5

[3] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual repre-
sentation learning. arXiv preprint arXiv:1911.05722, 2019.
5

[4] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. On the
burstiness of visual elements. In IEEE Conf. on Computer
Vision and Pattern Recognition, 2009. 3

[5] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. Packing
bag-of-features. In Int. Conf. on Computer Vision, 2009. 3

[6] Laurens van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journal of Machine Learning Research,
9(Nov), 2008. 1

[7] Ishan Misra and Laurens van der Maaten. Self-supervised
learning of pretext-invariant representations. arXiv preprint
arXiv:1912.01991, 2019. 5

[8] Florent Perronnin, Jorge Sánchez, and Thomas Mensink. Im-
proving the fisher kernel for large-scale image classification.
In European Conf. on Computer Vision, 2010. 3

[9] Josef Sivic and Andrew Zisserman. Video google: Efficient
visual search of videos. In Toward category-level object
recognition. Springer, 2006. 3

[10] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive
multiview coding. arXiv preprint arXiv:1906.05849, 2019. 5

[11] Sergey Zagoruyko and Nikos Komodakis. Wide residual
networks. In British Machine Vision Conf., 2016. 1

[12] Chengxu Zhuang, Alex Lin Zhai, and Daniel Yamins. Local
aggregation for unsupervised learning of visual embeddings.
In Int. Conf. on Computer Vision, 2019. 5



ImageNet Places205
Method conv2 conv3 conv4 conv5 pool5 conv2 conv3 conv4 conv5 pool5

Random [2] 13.7 12.0 8.0 5.6 - 16.6 15.5 11.6 9.0 -
Supervised methods
ImageNet [2] 33.3 48.7 67.9 75.5 - 32.6 42.1 50.8 51.5 -
ImageNet∗ 32.8 47.0 67.2 76.0 76.2 35.2 42.6 50.9 52.8 52.0
Places205 [2] 31.7 46.0 58.2 51.7 - 32.3 43.2 54.7 62.3 -

Prior self-supervised methods
RotNet∗ 30.1 42.0 52.5 46.2 40.6 32.9 40.1 45.0 42.0 39.4
Jigsaw [2] 28.0 39.9 45.7 34.2 - 28.8 36.8 41.2 34.4 -
Colorization [2] 24.1 31.4 39.6 35.2 - 28.4 30.2 31.3 30.4 -
LA† [12] 23.3 39.3 49.0 60.2 - 26.4 39.9 47.2 50.1 -
Concurrent work
MoCo [3] - - - - 60.6 - - - - -
PIRL [7] 30.0 40.1 56.6 63.6 - 29.0 35.8 45.3 49.8 -
CMC‡ [10] - - - - 64.1 - - - - -

BowNet conv4 34.4 48.7 60.0 62.5 62.1 36.7 44.7 50.5 50.9 51.1
BowNet conv5 34.2 49.1 60.5 60.4 60.2 36.9 44.7 50.1 49.6 49.5

Table 4: top-1 center-crop linear classification accuracy on ImageNet and Places205. For the conv2-conv5 layers of , to evaluate
linear classifiers, we resize their feature maps to around 9k dimensions (in the same way as in [2]). pool5 indicates the accuracy of the
linear classifier trained on the 2048-dimensional feature vectors produced by the global average pooling layer after conv5. Entries in gray
color are advantaged by either using 10-crops evaluation (method with †) or using two feature extractor networks (method with ‡). ∗: our
implementation.


