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In this supplementary material, we provide additional
information about the proposed algorithm (Sec. 1-2 and
Alg. 1), network architectures and training configura-
tions (Sec. 3), an extended ablation study (Sec. 5) as well
as additional visualizations (Sec. 6). The source code and
pretrained models are publicly available under https:
//github.com/zgojcic/3D_multiview_reg.

1. Closed-form solution of Eq. 4.

For the sake of completeness we summarize the closed-
form differentiable solution of the weighted least square
pairwise registration problem

R̂ij , t̂ij = argmin
Rij ,tij

N∑
l=1

wl||Rijpl + tij − ql)||2. (1)

Let p and q

p :=

∑NP

l=1 wlpl∑NP

l=1 wl

, q :=

∑NQ

l=1 wlql∑NQ

l=1 wl

(2)

denote weighted centroids of point clouds P ∈ RN×3 and
Q ∈ RN×3, respectively. The centered point coordinates
can then be computed as

p̃l := pl − p, q̃l := ql − q, l = 1, . . . , N (3)

Arranging the centered points back to the matrix forms P̃ ∈
RN×3 and Q̃ ∈ RN×3, a weighted covariance matrix S ∈
R3×3 can be computed as

S = P̃TWQ̃ (4)

where W = diag(w1, . . . , wN ) . Considering the singular
value decomposition S = UΣVT the solution to Eq. 1 is

∗First two authors contributed equally to this work.

given by

R̂ij = V

1 0 0
0 1 0
0 0 det(VUT )

UT (5)

where det(·) denotes computing the determinant and is used
here to avoid creating a reflection matrix. Finally, t̂ij is
computed as

t̂ij = q− R̂ijp (6)

2. Closed-form solution of Eq. 5 and 6

In this section we summarize the closed form solutions
to Eq. 5 and 6 from the main paper describing the rotation
and translation synchronization, respectively.

The least squares formulation of the rotation synchro-
nization problem

R∗i = argmin
Ri∈SO(3)

∑
(i,j)∈E

cij ||R̂ij −RiR
T
j ||2F (7)

admits a closed form solution under spectral relaxation
as follows [1, 2]. Consider a symmetric matrix L ∈
R3NS×3NS resembling a block Laplacian matrix, defined
as

L = D−A (8)

where D is the weighted degree matrix constructed as

D =


I3

∑
i ci1

I3
∑

i ci2
. . .

I3
∑

i ciNS

 (9)
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Figure 1. Network architecture of the FCGF [5] feature descrip-
tor. Each convolutional layer (except the last one) is followed by
batch normalization and ReLU activation function. The numbers
in parentheses denote kernel size, stride, and the number of ker-
nels, respectively.

and A is a block matrix of the relative rotations

A =


03 c12R̂12 · · · c1NS R̂1NS

c21R̂21 03 · · · c2NS R̂2NS
...

. . .
...

cNS1R̂NS1 cNS2R̂NS2 · · · 03


(10)

where the weights cij := ζinit(Γ) represent the confidence
in the relative transformation parameters M̂ij and NS de-
notes the number of nodes in the graph. The least squares
estimates of the global rotation matrices R∗i are then given,
under relaxed orthonormality and determinant constraints,
by the three eigenvectors vi ∈ R3NS corresponding to the
smallest eigenvalues of L. Consequently, the nearest rota-
tion matrices under Frobenius norm can be obtained by a
projection of the 3 × 3 submatrices of V = [v1,v2,v3] ∈
R3NS×3 onto the orthonormal matrices and enforcing the
determinant det(R∗i ) = 1 to avoid the reflections.

Similarly, the closed-form solution to the least squares
formulation of the translation synchronization

t∗i = argmin
ti

∑
(i,j)∈E

cij ||R̂ijti + t̂ij − tj ||2 (11)

can be written as [8]

t∗ = L+b (12)

where t∗ = [t∗
T

1 , . . . , t∗
T

NS
]T ∈ R3NS and b =

[b∗
T

1 , . . . ,b∗
T

NS
]T ∈ R3NS with

bi := −
∑

j∈N (i)

cijR̂
T
ij t̂ij . (13)

where N (i) denotes all the neighboring vertices of Si in
graph G.

3. Network architecture and training details

This section describes the network architecture as well
as the training details of the FCGF [5] feature descriptor
(Sec. 3.1) and the proposed registration block (Sec. 3.2).
Both networks are implemented in Pytorch and pretrained
using the 3DMatch dataset [13].

3.1. FCGF local feature descriptor

Network architecture The FCGF [5] feature descriptor
operates on sparse tensors that represent a point cloud in
form of a set of unique coordinates C and their associated
features F

C =

x1 y1 z1 b1
...

...
...

...
xN yN zN bN

 , F =

 f1...
fN

 (14)

where xi, yi, zi are the coordinates of the i-th point in the
point cloud and fi is the associated feature (in our case
simply 1). FCGF is implemented using the Minkowski En-
gine, an auto-differentiation library, which provides support
for sparse convolutions and implements all essential deep
learning layers [4]. We adopt the original, fully convolu-
tional network design of FCGF that is depicted in Fig. 1. It
has a UNet structure [11] and utilizes skip connections and
ResNet blocks [7] to extract the per-point 32 dim feature
descriptors. To obtain the unique coordinates C, we use a
GPU implementation of the voxel grid downsampling [4]
with the voxel size v := 2.5 cm.

Training details We again follow [5] and pre-train FCGF
for 100 epochs using the point cloud fragments from the
3DMatch dataset [13]. We optimize the parameters of the
network using stohastic gradient descent with a batch size
4 and an initial learning rate of 0.1 combined with an ex-
ponential decay with γ = 0.99. To introduce rotation in-
variance of the descriptors we perform a data augmentation
by randomly rotating each of the fragments along an arbi-
trary direction, by a different rotation, sampled from the
[0◦, 360◦) interval. The sampling of the positive and nega-
tive examples follows the procedure proposed in [5].

3.2. Registration block

Network architecture The architecture of the registra-
tion block (same for ψinit(·) and ψiter(·))2 follows [14] and is
based on the PointNet-like architecture [10] where each of
the fully connected layers (P in Fig. 2) operates on individ-
ual correspondences. The local context is then aggregated

2For ψinit(·) the input dimension is increased from 6 to 8 (weights and
residuals added).
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Figure 2. Network architecture of the registration block consists of two main modules: i) a PointNet-like ResNet block with instance
normalization, and ii) an order-aware block. For each point cloud pair, putative correspondences are feed into three consecutive ResNet
blocks followed by a differentiable pooling layer, which maps the Nc putative correspondences to Mc clusters Xk+1 at the level k + 1.
These serve as input to the three order-aware blocks. Their output X′k+1 is fed along with Xk into the differentiable unpooling layer.
The recovered features are then used as input to the remaining three ResNet blocks. The output of the registration block are the scores si
indicating whether the putative correspondence is an outlier or an inlier. Additionally, the 128-dim features (denoted as Xconf := f−2

θ (·))
before the last perceptron layer P are used as input to the confidence estimation block.

using the instance normalization layers [12] defined as

yl
i =

xl
i − µl

σl
(15)

where xl
i is the output of the layer l and µl and σl are per

dimension mean value and standard deviation, respectively.
Opposed to the more commonly used batch normalization,
instance normalization operates on individual training ex-
amples and not on the whole batch. Additionally, to rein-
force the local context, the order-aware blocks [14] are used
to map the correspondences to clusters using the learned
soft pooling Spool ∈ RNc×Mc and unpooling Sunpool ∈
RNc×Mc operators as

Xk+1 = ST
poolXk and X′k = SunpoolX

′
k+1 (16)

where Nc is the number of correspondences and Mc is the
number of clusters. Xk and Xk+1 are the features at the
level k (before clustering) and k + 1 (after clustering), re-
spectively (see Fig. 2). Finally, X′k+1 denotes the output of
the last layer in the level k + 1.

Training details We pre-train the registration blocks us-
ing the same fragments from the 3DMatch dataset. Specif-
ically, we first infer the FCGF descriptors and randomly
sample Nc = 5000 descriptors per fragment. We use
these descriptors to compute the putative correspondences
for all fragment pairs (i, j) such that i ≤ j. Based on the
ground truth transformation parameters, we label these cor-
respondences as inliers if the Euclidean distance between
the points after the transformation is smaller than 7.5 cm.
At the start of the training (first 15000 iterations) we super-

vise the learning using only the binary cross-entropy loss.
Once a meaningful number of correspondences can already
be classified correctly we add the transformation loss. We
train the network for 500k iterations using Adam [9] opti-
mizer with the initial learning rate of 0.001. We decay the
learning rate every 1000 iterations by multiplying it with
0.999. To learn the rotation invariance we perform data aug-
mentation, starting from the 25000th iteration, by randomly
sampling an angle from the interval [0◦, na · 20◦) where na
is initialized with zero and is then increased by 1 every 5000
iteration until the interval becomes [0◦, 360◦).

4. Pseudo-code

Alg. 1 shows the pseudo-code of our proposed approach.
We iterate k = 4 times over the network and transforma-
tion synchronization (i.e. Transf-Sync) layers and in each of
those iterations we execute the Transf-Sync layer four times.
Our implementation is constructed in a modular way (each
part can be run on its own) and can accept a varying num-
ber of input point clouds with or without the connectivity
information.

5. Extended ablation study

We extend the ablation study presented in the main pa-
per, by analyzing the impact of edge pruning based on the
local confidence (i.e. the output of the confidence estimation
block) (Sec. 5.1) and of the weighting scheme (Sec. 5.2)
on the angular and translation errors. The ablation study
is performed on the point cloud fragments of the ScanNet
dataset [6].
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Algorithm 1 Pseudo-code of the proposed approach

Input: a set of potentially overlapping scans {Si}NS
i=1

Output: globally optimized poses {M∗i }NS
i=1

# Compute the pairwise transformations
for each pair of scans Si,Sj ⊂ S, i 6= j do

# find the putative correspondences using φ(·)
- Xij = cat([Si, φ(Si,Sj)]) ∈ RNSi

×6

# compute the weights wij ∈ RnSi using ψinit(·)
- wij = ψinit(Xij) ∈ RNSi

- calculate Rij , tij using SVD according to (4)
# Iterative network for transformation synchronization
X

(0)
ij ← Xij , w

(0)
ij ← wij , r

(0)
ij ← rij

for k = 1, 2, · · · ,max iters do
for each pairwise output from ψinit do

- R(k)
ij , t

(k)
ij ,w

(k)
ij = ψiter([X

(k−1)
ij ,w

(k−1)
ij , r

(k−1)
ij ])

- estimate local{c(k)ij } using (16)

- Gather the pairwise estimation as R(k), t(k), c(k)

# Build the graph and perform the synchronization
if k = 1 then

- c(k) := local{c(k)}
else

- c(k) := fHM (local{c(k)}, global{c(k−1)}
- R∗(k), t∗(k) = Transf-Sync(R(k), t(k), c(k))
# update step
for each pair of scans Si,Sj ⊂ S, i 6= j do

- X(k+1)
ij = cat([Si,M

∗(k)
ij ⊗ φ(Si,Sj)]

- w(k+1)
ij = w

(k)
ij

- r(k+1)
ij = ‖Si −M

∗(k)
ij ⊗ φ(Si,Sj)‖2

5.1. Impact of the edge pruning threshold

Results depicted in Fig. 3 show that the threshold value
used for edge pruning has little impact on the angular and
translation errors as long as it is larger than 0.2.

5.2. Impact of the harmonic mean weighting scheme

In this work, we have introduced a scheme for combining
the local and global confidence using the harmonic mean
(HM). In the following, we perform the analysis of this pro-
posal and compare its performance to established methods
based only on global information [3]. To this end, we again
consider the scenario ”Ours (Good)” as the input graph con-
nectivity information. We compare the results of the pro-
posed scheme (HM) to SE3 EIG [3], which proposes using
the Cauchy function for computing the global edge confi-
dence [3]. Note, we use the same pairwise transformation
parameters, estimated using the method proposed herein,
for all methods.

Without edge pruning It turns out that combining the lo-
cal and global evidence about the graph connectivity is es-
sential to achieve good performance. In fact, merely relying

on local confidence estimates without HM weighting (de-
noted as ours; green) in Fig. 4) the Transf-Sync is unable
to recover global transformations from the given graph con-
nectivity evidence that is very noisy. Introducing the HM
weighting scheme allows us to reduce the impact of noisy
graph connectivity built solely using local confidence and
can significantly improve performance after Transf-Sync
block, which in turn enables us to outperform the SE3 EIG.

With edge pruning Fig. 5 shows that pruning the edges
can help coping with noisy input graph connectivity built
from the pairwise input. In principal, suppression of the
edges with low confidence results in discarding the outliers
that corrupt the l2 solution and as a result improves the per-
formance of the Transf-Sync block.

6. Qualitative results
We provide some additional qualitative results in form

of success and failure cases on selected scenes of 3DMatch
(Fig. 6 and 7) and ScanNet (Fig. 8 and 9) datasets. Specif-
ically, we compare the results of our whole pipeline Ours
(After Sync.) to the results of SE3 EIG [3], pairwise registra-
tion results of our method from the first iteration Ours (1st

iter.), and pairwise registration results of our method from
the fourth iteration Ours (4th iter.). Both global methods
(Ours (After Sync.) and SE3 EIG) use transformation pa-
rameters estimated by our proposed pairwise registration al-
gorithm as input to the transformation synchronization. The
failure cases of our method predominantly occur on point
clouds with low level of structure (planar areas in Fig. 7
bottom) or high level of symmetry and repetitive structures
(Fig. 9 top and bottom, respectively).

4



0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

ae [◦]

0.0

0.1

0.2

0.3

0.4

0.5

E
C

D
F

Thresh. (0.0)

Thresh. (0.2)

Thresh. (0.4)

Thresh. (0.6)

Thresh. (0.8)

(a)

0 2 4 6 8 10 12 14 16 18 20

te [cm]

0.0

0.1

0.2

0.3

0.4

0.5

E
C

D
F

Thresh. (0.0)

Thresh. (0.2)

Thresh. (0.4)

Thresh. (0.6)

Thresh. (0.8)

(b)
Figure 3. Impact of the threshold value for edge pruning on the angular and translation errors. Results are obtained using the all pairs as
input graph on ScanNet dataset [6]. (a) angular error and (b) translation error.
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Figure 4. Impact of the weighting scheme without edge cutting on the angular and translation errors. (a) angular and (b) translation errors.
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Figure 5. Impact of the weighting scheme combined with edge cutting, on the angular and translation errors. (a) angular error and (b)
translation error.
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Figure 6. Selected success cases of our method on 3DMatch dataset. Top: Kitchen and bottom: Hotel 1. Red rectangles highlight
interesting areas with subtle changes.
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Figure 7. Selected failure cases of our method on 3DMatch dataset. Top: Home 1 and bottom: Home 2. Note that our method still
provides qualitatively better results than state-of-the-art.
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Figure 8. Selected success cases of our method on ScanNet dataset. Top: scene0057 01 and bottom: scene0309 00. Red rectangles
highlight interesting areas with subtle changes.
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Figure 9. Selected failure cases of our method on ScanNet dataset. Top: scene0334 02 and bottom: scene0493 01. Note that our method
still provides qualitatively better results than state-of-the-art.

9



References
[1] Mica Arie-Nachimson, Shahar Z Kovalsky, Ira

Kemelmacher-Shlizerman, Amit Singer, and Ronen
Basri. Global motion estimation from point matches.
In International Conference on 3D Imaging, Modeling,
Processing, Visualization & Transmission, 2012. 1

[2] Federica Arrigoni, Luca Magri, Beatrice Rossi, Pasqualina
Fragneto, and Andrea Fusiello. Robust absolute rotation es-
timation via low-rank and sparse matrix decomposition. In
IEEE International Conference on 3D Vision (3DV), pages
491–498, 2014. 1

[3] Federica Arrigoni, Beatrice Rossi, and Andrea Fusiello.
Spectral synchronization of multiple views in se(3). SIAM
Journal on Imaging Sciences, 9(4):1963–1990, 2016. 4

[4] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d
spatio-temporal convnets: Minkowski convolutional neural
networks. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 3075–3084, 2019. 2

[5] Christopher Choy, Jaesik Park, and Vladlen Koltun. Fully
convolutional geometric features. In The IEEE International
Conference on Computer Vision (ICCV), pages 8958–8966,
2019. 2

[6] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
Proc. Computer Vision and Pattern Recognition (CVPR),
IEEE, 2017. 3, 5

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016. 2

[8] Xiangru Huang, Zhenxiao Liang, Xiaowei Zhou, Yao Xie,
Leonidas J Guibas, and Qixing Huang. Learning transfor-
mation synchronization. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 8082–8091,
2019. 2

[9] Diederik P. Kingma and Jimmy Lei Ba. Adam: a Method
for Stochastic Optimization. In International Conference on
Learning Representations 2015, 2015. 3

[10] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017. 2

[11] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015. 2

[12] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-
stance normalization: The missing ingredient for fast styliza-
tion. arXiv preprint arXiv:1607.08022, 2016. 3

[13] Andy Zeng, Shuran Song, Matthias Nießner, Matthew
Fisher, Jianxiong Xiao, and Thomas Funkhouser. 3DMatch:
Learning Local Geometric Descriptors from RGB-D Recon-
structions. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2017. 2

[14] Jiahui Zhang, Dawei Sun, Zixin Luo, Anbang Yao, Lei
Zhou, Tianwei Shen, Yurong Chen, Long Quan, and Hon-
gen Liao. Learning two-view correspondences and geometry
using order-aware network. In International Conference on
Computer Vision (ICCV), 2019. 2, 3

10


