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In this document, we provide additional details on the se-
lection of the annealing rate, analyse the structure of P and
formalise the unembedding, i.e., the conversion of the solu-
tion to QUBOP (16) to the solution of the original alignment
problem on point sets. We preserve the notations referring
to the sections and equations from the main matter. The
equations and the figure introduced in this supplement are
equipped with Roman numerals.

Annealing Rate

Suppose En(s) is the ground state of instantaneous
Hamiltonian, En(0) is the initial state (ground state) of the
system and Em(s) is any other excited state of the instan-
taneous Hamiltonian. Let s = t

T ∈ [0; 1], where T is the
overall time of interpolation and t is physical time. Then,
according to [1], T has to be chosen so that

T � |〈Em(s)|dH/ds|En(s)〉|
Enm(s)2

, ∀m 6= n, (i)

where dH/ds is the rate of change of Hamiltonian with re-
spect to s and Enm is the difference in the corresponding
instantaneous energies.

Analysis of P

Fig. I visualises several exemplary weight matrices P
from the experiments with clean and noisy data (see Sec. 7).
There are several observations. First, P = ΦΦT is sym-
metric upon algorithm design. We also see that the columns
of Φ can be arbitrarily reshuffled as long as the correspon-
dences are preserved1. Second, P contains regularly ar-
ranged zero submatrices, due to our choice of the basis. As
soon as a row of Φ induced by qCI, where CI ∈ {I,−I},
is multiplied by a column of ΦT induced by qCM, where
CM ∈ {M,−M}, and vice versa, we obtain a zero entry

1a reshuffling of rows requires changing the order of elements in Q
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Figure I: Exemplary visualisations of the weight matrix P = ΦΦT in
the experiment with clean (A/) and noisy data with 35% of outliers in the
template (B/), for K ∈ {1, 10, 20, 40} and θ ∈

{
π
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scheme and the range of energy values are given to the right of each P.
White colour stands for zero entries. The diagonal values in P represent
biases (marked in orange on the top left), and non-zero elements represent
couplings between the qubits. In the visualisation on the top left, we list
the pairs of C ∈ {I,M,−I,−M} eventually leading to zero matrices.
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if
∑

i yi =
∑

j yj , which holds in our case since each row
of Φ except the first row includes all points of Y multi-
plied by a single basis element Qk (see Fig. I-(top left) for
C pairs resulting in zero matrices). Third, the structure of
P reflects that its diagonal entries encode biases, and non-
diagonal elements represent couplings between the qubits.

With the increasing K, the span of the absolute energy
values increases, due to the higher number of point inter-
actions. As expected, P depends on data and the angle of
initial misalignment between the point sets. For all possi-
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ble inputs and initial conditions — point sets of different
cardinalities, K and θ — the structure of P is the same for
the chosen basis. From P, we also recognise that the con-
sidered alignment problem is not purely combinatorial and
requires high-precision weights Jj,k in (5).

Unembedding
Unembedding is the decoding of the solution to QUBOP

(16) to the solution of the original alignment problem.
Upon the design, our QA method assembles the entries
of the transformation matrix in the additive basis Qk (see
Secs. (5.1)–(6.1)). Suppose q̂ is the measurement result of
q, i.e., it is a classical bitstring with K + 1 elements. Re-
call that q1 is reserved for reference points and does not
contribute to the assembly of the transformation. Once q̂ is
measured and returned, we obtain the corresponding trans-
formation R by summing up Qk multiplied by q̂k+1:

R =
∑
k

q̂k+1Qk. (iii)

The obtained R is an affine transformation. If the solution
has to represent a valid rotation matrix Rr, R can be pro-
jected to the rotation group by solving the closest orthogo-
nal approximation problem with constraints:

min ‖Rr −R‖2HS ,
s. t. R−1r = RT

r and det(Rr) = 1.
(iv)

For a solution to (iv) by singular value decomposition, see
[2].
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