
Achieving Robustness in the Wild via
Adversarial Mixing with Disentangled Representations

(Supplementary Material)

A. Additional examples
Figure 9 shows additional examples of perturbations obtained on Color-MNIST by (a) mixup, (b) adversarial attacks

on `∞-bounded perturbations of size ε = 0.1, and (c) our method AdvMix. Figure 10 shows examples on CELEBA. The
underlying classifier is the nominally trained convolutional network. We observe that the perturbations generated by AdvMix
are semantically meaningful and result in plausible image variants – to the contrary of the other two methods.

(a) mixup

(b) Adversarial Training (ε = 0.1)

(c) AdvMix or RandMix

Figure 9. Example of perturbations obtained by different techniques on our Color-MNIST dataset. The image on the far left is the original
image. On the same row are variations of that image. Even rows show the rescaled difference between the original image and its variants.



(a) mixup

(b) Adversarial Training (ε = 8/255)

(c) AdvMix or RandMix

Figure 10. Example of perturbations obtained by different techniques on CELEBA. The image on the far left is the original image. On the
same row are variations of that image. Even rows show the rescaled difference between the original image and its variants.



Figure 11 shows image variants generated by AdvMix. For four out of five images, AdvMix is able to change the decision of
a “smile” detector (nominally trained on CELEBA). We can qualitatively observe that brighter skin-tone and rosy cheeks tends
to produce images that are more easily classified as “smiling”. Our interpretation is that pictures on the second row appear to
be taken using flash photography (where it is more common for people to smile). The second picture from the left (on the
second row) also seem to be taken at night during an event.

Figure 11. Example of perturbations obtained by AdvMix on randomly generated images. The top row consists of images generated by
a StyleGAN model – all these images are classified as “not smiling” by the nominal classifier (the numbers indicate the classifier output
probability for “smiling”). The second row consists of adversarial perturbations obtained by AdvMix. The last row shows the rescaled
differences between the original images and their variant.



B. Additional results on CELEBA
For completeness, Table 4 shows the performance of mixup, Cutout and CutMix on the CELEBA attributes used in Table 3.

In addition to the evaluation of the unmodified clean test set, we also evaluate all methods by executing Algorithm 2 with
Nr set to 10. In other words, for each trained classifier, we try to find a misclassified variant for each example of the test set.
When a misclassified variant is found, we count the corresponding example as misclassified “under perturbation”.

We observe that while data augmentation schemes such as mixup, Cutout or CutMix sometimes improve over nominal
training, they do not provide consistent improvements. With the exception of “Attribute 3” (where CutMix is particularly
efficient), AdvMix achieves the highest accuracy on the clean test set. Additionally, as is expected, AdvMix systematically
achieves the highest accuracy on perturbed images.

Table 4. Clean accuracy and accuracy under perturbations on different classification tasks of the CELEBA dataset.

Accuracy on Attribute 1
Method Clean Under perturbation

Nominal 96.49% 40.35%

mixup (α = 0.2) 97.22% 50.48%
Cutout 96.92% 61.58%
CutMix 97.18% 32.86%

AT `∞ with ε = 4/255 95.34% 48.91%
AT `∞ with ε = 8/255 95.22% 45.01%

RandMix 96.70% 39.41%
AdvMix 97.56% 84.29%

Accuracy on Attribute 2 (smiling)
Nominal 90.22% 18.60%

mixup (α = 0.2) 90.95% 30.49%
Cutout 90.44% 17.55%
CutMix 90.88% 15.46%

AT `∞ with ε = 4/255 91.11% 60.93%
AT `∞ with ε = 8/255 89.29% 56.19%

RandMix 90.36% 23.51%
AdvMix 92.29% 74.55%

Accuracy on Attribute 3
Nominal 83.52% 3.31%

mixup (α = 0.2) 85.16% 3.51%
Cutout 84.94% 2.91%
CutMix 85.67% 1.47%

AT `∞ with ε = 4/255 81.43% 52.92%
AT `∞ with ε = 8/255 79.46% 62.71%

RandMix 84.49% 3.19%
AdvMix 85.65% 69.55%

Accuracy on Attribute 4
Nominal 78.05% 0.23%

mixup (α = 0.2) 76.80% 0.03%
Cutout 76.59% 0.14%
CutMix 78.50% 0.19%

AT `∞ with ε = 4/255 76.61% 9.74%
AT `∞ with ε = 8/255 74.39% 5.68%

RandMix 76.41% 0.42%
AdvMix 79.47% 47.95%



C. Code snippets
This section shows how to implement Algorithms 1 and 2 in TensorFlow 2 [57]. Below is Algorithm 1.

1 import numpy as np
2 import tensorflow as tf
3

4 import imagenet # Custom package which contains ‘VGG16‘.
5 import stylegan # Custom package which contains ‘Generator‘.
6

7

8 # Hyper-parameters.
9 num_steps = 2000

10 def learning_rate_schedule(t):
11 if t < 1500:
12 return .05
13 return .01
14 mixing_level = 8
15

16 # Optimizer.
17 learning_rate = tf.Variable(0., trainable=False, name=’learning_rate’)
18 optimizer = tf.keras.optimizers.Adam(learning_rate)
19

20 # Create the StyleGAN generator.
21 # ‘generator‘ has a the following properties:
22 # - latent_size: Number of latent coordinates (for the FFHQ model, this is equal to 512)
23 # - average_disentangled_latents: Average disentangled latents.
24 # It also has the following functions:
25 # - map(z) which runs the mapping operation that transforms latents into disentangled latents.
26 # - synthesize(z_disentangled) which generates an image from disentangled latents.
27 generator = stylegan.Generator()
28

29 # Create a VGG network.
30 # ‘vgg‘ has the following function:
31 # - get_activations(x) which computes the VGG activations at its 1st block 2nd convolution,
32 # 3rd block 2nd convolution, 4th block 2nd convolution.
33 vgg = imagenet.VGG16()
34

35 # Target image.
36 target_image = load_target_image()
37 activations_of_target_image = [target_image] + vgg(tf.image.resize(target_image, 225, 225))
38

39 # ‘disentangled_latents‘ will be optimized to match ‘target_image‘.
40 # For the FFHQ model, ‘disentangled_latents‘ has shape [18, 512].
41 disentangled_latents = tf.Variable(average_disentangled_latents, name=’disentangled_latents’)
42

43

44 def feature_loss(a, b):
45 s = float(np.prod(a.shape.as_list()))
46 return tf.reduce_sum(tf.square(a - b)) / s
47

48

49 def compute_loss(z):
50 """Computes the loss."""
51 generated_image = generator.synthesize(z)
52 activations_of_generated_image = (
53 [generated_image] + vgg(tf.image.resize(generated_image, 225, 225)))
54

55 # Reconstruction and perceptual loss.
56 zipped_activations = zip(activations_of_generated_image, activations_of_target_image)
57 loss = sum([feature_loss(g, t) for g, t in zipped_activations])
58

59 # Generated a randomly mixed image.
60 random_latents = tf.random.normal(shape=(generator.latent_size,))
61 random_disentangled_latents = generator.map(random_latents)
62 mixed_disentangled_latents = tf.concat([
63 z[:mixing_level, :],
64 random_disentangled_latents[mixing_level:, :]



65 ], axis=0)
66 mixed_image = generator.synthesize(mixed_disentangled_latents)
67

68 # Perceptual loss on mixed image.
69 activations_of_mixed_image = vgg(tf.image.resize(mixed_image, 225, 225))
70 zipped_activations = zip(activations_of_mixed_image, activations_of_target_image[1:])
71 loss += sum([.2 * feature_loss(g, t) for g, t in zipped_activations])
72

73 return loss
74

75

76 # Run the optimization procedure.
77 for step in range(num_steps):
78 with tf.GradientTape() as tape:
79 tape.watch(disentangled_latents)
80 loss = compute_loss(disentangled_latents)
81 grads = tape.gradient(loss, [disentangled_latents])
82 learning_rate.assign(learning_rate_schedule(step))
83 optimizer.apply(grads, [disentangled_latents])

Below is Algorithm 2.

1 import tensorflow as tf
2

3 import stylegan # Custom package which contains ‘Generator‘.
4

5

6 # Hyper-parameters.
7 mixing_level = 8
8 epsilon = .03
9 num_restarts = 5 # Or 10 for evaluation (the higher the better).

10 num_steps = 7 # Or 20 for evaluation.
11 step_size = .005
12

13 # Create the StyleGAN generator.
14 # ‘generator‘ has a the following properties:
15 # - latent_size: Number of latent coordinates (for the FFHQ model, this is equal to 512)
16 # - average_disentangled_latents: Average disentangled latents.
17 # It also has the following functions:
18 # - map(z) which runs the mapping operation that transforms latents into disentangled latents.
19 # - synthesize(z_disentangled) which generates an image from disentangled latents.
20 generator = stylegan.Generator()
21

22 # ‘classifier‘ is the current classification model we are training or evaluating.
23 # ‘classifier‘ has the following function:
24 # - get_logits(x) which returns the logits of x.
25 classifier = load_current_model()
26

27 # ‘z‘ are precomputed latents obtained through Algorithm 1.
28 # For the FFHQ model, ‘z‘ has shape [18, 512].
29 # ‘y‘ is the class of the original image that can be synthesized through z.
30 z = load_disentangled_latents()
31 z_parallel = z[:mixing_level, :]
32 y = get_class_of(z)
33

34

35 def project(x, x0, eps):
36 return x0 + tf.clip_by_value(x - x0, -eps, eps)
37

38

39 # Initialization.
40 x = generator.synthesize(z)
41 logits = classifier.get_logits(x)
42 highest_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(y, logits)
43 adversarial_x = x
44

45 for _ in range(num_restarts):
46 # Pick a random set of disentangled latents.



47 z = tf.random.normal(shape=(generator.latent_size,))
48 z_perp = z_perp_original = generator.map(z)[mixing_level:, :]
49

50 for _ in range(num_steps):
51 with tf.GradientTape() as tape:
52 tape.watch(z_perp)
53 # Mix latents.
54 mixed_z = tf.concat([z_parallel, z_perp], axis=0)
55 # Generate and classify.
56 x = generator.synthesize(mixed_z)
57 logits = classifier.get_logits(x)
58 # Cross-entropy loss.
59 loss = tf.nn.sparse_softmax_cross_entropy_with_logits(y, logits)
60 if loss > highest_loss:
61 adversarial_x = x
62 highest_loss = loss
63

64 grad = tape.gradient(loss, [z_perp])[0]
65 z_perp += step_size * tf.math.sign(grad) # Gradient ascent.
66 z_perp = project(z_perp, z_perp_original, epsilon)
67

68 # Last step.
69 mixed_z = tf.concat([z_parallel, z_perp], axis=0)
70 x = generator.synthesize(mixed_z)
71 logits = classifier.get_logits(x)
72 loss = tf.nn.sparse_softmax_cross_entropy_with_logits(y, logits)
73 if loss > highest_loss:
74 adversarial_x = x
75 highest_loss = loss


