
Generative Hybrid Representations for
Activity Forecasting with No-Regret Learning

Supplementary Materials

Jiaqi Guan1, 2, Ye Yuan1, Kris M. Kitani1, and Nicholas Rhinehart1, 3

1Carnegie Mellon University 2University of Illinois Urbana Champaign 3UC Berkeley
{jiaqig, yyuan2, kkitani}@cs.cmu.edu, nrhinehart@berkeley.edu

1. Proof of Regret Bound
According to Equation 2.5 of [6], if a loss function f parameterized by θ is convex and ‖θ‖2 ≤ B , then the regret of

online gradient descent RT at the T -th time step is bounded as follows:

RT ≤
1

2λ
‖θt‖22 + λ

T∑
t=1

‖∇θt‖22 . (1)

This regret bound depends on the norm of the sub-gradients produced by the algorithm, and thus is not satisfactory. To
derive a more concrete bound, according to Corollary 2.7 of [6], if ft is Lt-Lipschitz with respect to ‖ · ‖2, and let L be such
that 1

T

∑T
t=1 L

2
t ≤ L2, then we have:

RT ≤
1

2λ
‖θ‖22 + λTL2 . (2)

In particular, if λ = B
L
√
2T

, then

RT ≤ BL
√

2T . (3)

It is obvious that the average regret RTT approaches zero as T increases since this bound is sublinear in T . Therefore, as long
as we can prove the loss function is convex with respect to θ, then we can add constraints to the variable norm ‖θ‖2 and the
gradient norm ‖∇θ‖, and our algorithm will be no regret. Next, we will prove the convexity of our forward and reverse cross
entropy losses.

1.1. Trajectory Forecasting Loss

First, we will consider the trajectory forecasting loss. To perform online learning for our model, we pretrain the trajectory
simulator fπ and fix its parameters, and only add a learnable linear layer to transform the µt output by the policy π, so xt can
be rewritten as

xt = µ̂t + σtzt = xt−1 + θµµt + σtzt . (4)

where θµ is the learnable parameter. The policy output µt and σt are fixed during online learning.

1

Trajectory Forward Cross Entropy For the forward cross entropy, we will not use the reparameterization trick and
change-of-variable formula to analyze its convexity. Instead, it can be directly written as follows:

H(p, qπ) = Ex̃∼p − log qπ(x̃|φ)

= Ex̃∼p
T∑
t=1

− logN(x̃t; µ̂t,Σ = σtσ
T
t)

= Ex̃∼p
T∑
t=1

− log
exp(− 1

2 (x̃t − µ̂t)TΣ−1(x̃t − µ̂t))√
(2π)3|Σ|

= Ex̃∼p
T∑
t=1

1

2
(log |Σ|+ (x̃t − µ̂t)TΣ−1(x̃t − µ̂t) + 3 log 2π) .

(5)

Notice that since x̃ is sampled from p rather than qπ , we can decompose the objective function over t, and we only need
to demonstrate the convexity of the loss function at each time step. For convenience, we will omit the subscript t in the
following proof.

In our setting, x̃t, µ̂t ∈ R3×1, σt ∈ R3×3. If we use a general linear layer, i.e., θµ ∈ R3×3, the gradient of the objective is:

∇θµ = −Σ−1(xt − µ̂t)µTt
= −Σ−1(xt − (xt−1 + θµµt))µ

T
t .

(6)

The Hessian matrix of the objective is
H = ∇2

θµ = (µµT ⊗ Σ−1) , (7)

where⊗ denotes the Kronecker product and H ∈ R9×9. We useA to denote µµT andB to denote Σ−1. With the properties of
the Kronecker product and the trace operator, we can prove the positive semidefiniteness of H as follows: for any x ∈ R3×3,
we have

vec(xT) · (A⊗B) · vec(x)

=vec(xT) · vec(AxB)

=Tr(xTAxB)

=Tr(xTµµTxΣ−1)

=Tr(µTxΣ−1xTµ)

=(xTµ)TΣ−1(xTµ)

≥0 ,

(8)

where we use the fact that since Σ = σtσ
T
t is positive definite, its inverse Σ−1 is also positive definite. Because the Hessian

of the objective is positive semidefinite, our algorithm’s forward cross entropy loss of trajectory forecasting is convex with
regard to the linear layer’s parameter θµ.

Trajectory Reverse Cross Entropy The original reverse cross entropy of trajectory forecasting can be written as follows:

H(qπ, p̃) = −Ex∼qπ log p̃(x)

= −Ex∼qπ
T∑
t=1

logN(xt;µ = x̃t,Σ = λI) .
(9)

Notice that xt is generated from µt and σt, which are functions of past generated positions xt−1−H:t−1. So the reverse
cross entropy contains complex nonlinear operations and it is hard to guarantee its convexity. To tackle this problem, at each
time step t, we sample past trajectories x1:t−1 from the true data distribution and only sample position xt from our policy,
i.e. x1:t−1 ∼ p, xt ∼ qπ . If we write down the reverse cross entropy under this setting, we will find it is c1(µt + σtzt −
xt)

TΣ−1(µt+σtzt−xt)+c2 (c1, c2 are constants), which only differs from the forward cross entropy (xt−µt)TΣ−1(xt−µt)
with a constant term. Thus, we can also prove the convexity of the reverse cross entropy using the convexity of the forward
cross entropy.

2

1.2. Action Forecasting Loss

Action Forward Cross Entropy Recall that the forward cross entropy loss of action forecasting is defined as

H (p, qκ) = −E(x,a)∼p log q (a|x, φ)

= −E(x,a)∼p
∑
t,c

log τ

(
2∑
i=1

ut,c,i (χt)

aτt,c,i

)−2 2∏
i=1

(
ut,c,i (χt)

aτ+1
t,c,i

)
,

(10)

where κ is our action policy (which maps context χ to action logits u), a is the true action label, and τ is the Gumbel-Softmax
temperature.

Similar to trajectory forecasting, we apply an affine transformation on u. Since a is sampled from p and there is no
correlationship among actions if we apply the action-wise affine transformation, we can decompose the loss function over
time and actions, and simply analyze the convexity of the loss for a single action class c at a single time step t. Thus, we drop
the subscripts t, c and use u1, u2 to represent the action probabilities output by the policy κ. Since u1, u2 are generated by
the softmax operation on the last layer’s output v1, v2, we use parameters θ1, θ2 to transform the last layer before the softmax
operation, and the new action probabilities are defined as

u1 =
eθ1v1

eθ1v1 + eθ2v2
=

w1

w1 + w2
,

u2 =
eθ2v2

eθ1v1 + eθ2v2
=

w2

w1 + w2
.

(11)

Thus, the action forward cross entropy for a single action class c at time step t can be written as

H(θ1, θ2) = − log(c1u1 + c2u2)−2(c′1u1)(c′2u2)

= − log
w1w2

(c1w1 + c2w2)2

= − logw1w2 + 2 log(c1w1 + c2w2) ,

(12)

where c1 = aτ1 , c2 = aτ2 , c
′
1 = aτ+1

1 , c′2 = aτ+1
2 . Since − logw1w2 = −(θ1v1 + θ2v2) is a linear function, which is clearly

convex, we only need to prove the convexity of log(c1w1 + c2w2) (sum is an operation preserving convexity). The Hessian
matrix of log(c1w1 + c2w2) is:

H =

[
c1c2v

2
1A

S2
−c1c2v1v2A

S2

−c1c2v1v2A
S2

c1c2v
2
2A

S2

]
, (13)

where A = eθ1v1+θ2v2 , S = c1e
θ1v1 + c2e

θ2v2 . We can prove its positive semidefiniteness by definition: for any x ∈ R2, we
have

xTHx =
c1c2A

S2

[
x1 x2

]T [v21 −v1v2
−v1v2 v22

] [
x1
x2

]
=
c1c2A

S2
(v1x1 − v2x2)2 ≥ 0 .

Thus, our algorithm’s forward cross entropy loss of action forecasting is also convex.
In summary, when we apply above linear transformations on the networks, our trajectory forward cross entropy, modified

trajectory reverse cross entropy and action forward cross entropy are convex with respect to the parameters of the trans-
formations. As a result, our model can perform online learning with the sum of these losses with theoretical guarantee of
no-regret.

3

2. Network Architecture Details

Component Input[dimensionality] Layer or Operation Output[dimensionality] Details

Trajectory Simulator

Traj [K,B, P, 3] RNN [K,B, 100] GRU cell, tanh activation
TrajFeat [K,B, 100] FC [K,B, 200] ReLU activation
TrajFeat [K,B, 200] FC [K,B, 12] Identity activation→ µ ∈ R3, s ∈ R3×3

Trajectory generation: xt = xt−1 + µt + expm(softclip(st)) · zt, zt ∼ N

Action Simulator

Image [B, 4, H,W, 3] ResNet-50 [1] [B, 4, 400]

ImageFeat [B, 4, 400] FC [B, 400] ReLU→ ImageConsensus (a)
Traj [K,B, P, 3] FC [K,B, 200] ReLU
TrajEnc [K,B, 200] FC [K,B, 200] ReLU→ TrajEncoding (b)
TrajFeat, ActFeat a, b Tile(a)⊕ (b) [K,B, 600] Concatenate(⊕)
JointFeat [K,B, 600] FC [K,B, 500] ReLU
JointFeat [K,B, 500] FC [K,B,Ca × 2] Identity→ v

Action logits [K,B,Ca × 2] Softmax [K,B,Ca × 2] Action Probability u
Action generation: at,c = softmax((log(ut,c) + gt,c)/τ), gt,c ∼ G

Table 1. Network architecture details. Layers are arranged from top to bottom. We use the following hyper-parameters: sample number
K = 12, batch size B = 10, past trajectory context horizon P = 10, image size H = W = 224, and the number of action classes
Ca = 122.

2.1. Trajectory Network

Recall our trajectory simulator fπ:
xt = µt (ψt; θ) + σt (ψt; θ) zt .

We assume that people tend to be still, so we model µt as: µt = xt−1 + µ̄t, where µ̄t can be interpreted as a velocity. To
ensure positive-definiteness of σt, we use the matrix exponential: σt = expm(st + sTt). To enhance numerical stability, we
soft-clip st before calculating σt with the following formula: softclip(s, L) = s

log
∑

exp(softmax(1,‖s‖/L)) (we use L = 5) and
also add a minimum precision identity matrix εI to σt before calculating the inverse of σt.

We use a GRU to encode past positions xt−P :t−1 ∈ R10×3 with 100 hidden units and a 2-layer MLP to generate µ̄t ∈ R3

and σt ∈ R3×3 with 200 hidden units. The activation function is tanh for the GRU and ReLU for the MLP. The network
architecture details can also be found in Table 1.

2.2. Action Network

The ConvNet we use in our action network is ResNet-50 [1] and the network architecture is mainly based on Temporal
Segment Networks (TSN) [8]. Past observed images of 2 seconds are sampled with 2 fps and cropped to 224 × 224. As
a result, 4 past images in total are passed through the ConvNet separately. The output of the ConvNet is 400 dimensional
for each image, and then a stacked 1600 dimensional feature is passed through a fully-connected layer to generate a 400
dimensional segmental consensus. Our action network also uses the past trajectory x ∈ RP×3, which are passed through an
MLP with a single 200-dim hidden layer with ReLU activation to output a 200-dim encoding. Finally, a 2-layer MLP takes
the segmental consensus and the past trajetory encoding as input and outputs the action class scores. For this MLP, the hidden
layer has 500 units and also use ReLU activation function. The output of the action network is a ∈ RCa×2. In our setting,
P = 10, T = 5, Ca = 122. In one of the baseline, the trajectory-independent action forecasting model (Ours(S)), the action
network does not depend on trajectories, so the action network only takes the segmental consensus as input in that setting.

The CVAE baseline follows the same network structure as our model to encode context and decode context to generate
positions and actions at each time step. The only difference is that the CVAE baseline uses the context encoding to generate
the mean and standard deviation of latent variables with one fully connected layer. Following [4], another fully connected
layer with sigmoid activation is applied to map latent variables to a feature of the same dimensions as the context encoding.
They are combined via element-wise multiplication.

4

3. Other Details
3.1. Evaluation Metrics

We calculate the example-based precision and recall in the same way as [9]:

precision =
1

NTa

∑
N,Ta

ΣCatp

ΣCa(tp+ fp)
,

recall =
1

NTa

∑
N,Ta

ΣCatp

ΣCa(tp+ fn)
,

where N is the number of examples, and Ta is the action forecasting horizon. tp, fp, fn is the number of true positives, false
positives, and false negatives respectively.

3.2. Data Augmentation

Data augmentation can generate diverse training samples and alleviate over-fitting. In our implementation, we follow the
same approach used in VGG [7]: resize the original image to 256 × 256, randomly crop it to 224 × 224, and randomly flip
it horizontally. Additionally, since we down-sample videos with a lower fps, we split the original sequence of images into
4 snippets with equal length, and randomly select images from each snippet during the training phase. This is similar to the
approach used in TSN [8].

3.3. Data Perturbation

As mentioned in [5], H(p, q) is lower-bounded by H(p), but it may be unbounded below since H(p) may be arbitrarily
negative. Thus, we also perturb the trajectories in training data with −Eη∼N (0,ηI)Ex∼p log q(x + η) and η = 0.0001. It
eliminates singularity of the metric, because the perturbation distribution has a finite entropy.

3.4. Training Details

In our prior distribution approximation, for trajectory reverse cross entropyH(qπ, p̃), we build p̃ as a sequence of unimodal
normal distributions with ground-truth trajectory x̃ as means, i.e., p̃(x|φ) = N(·|x̃;σI). We choose σ = 0.01. For action
H(qκ, p), we also view each action happening at t as a unimodal normal distribution in the time dimension. We choose the
0.5 as the scale factor. For the model trained with both forward and reverse cross entropy losses, we use β = 0.02 for the
trajectory reverse cross entropy and β = 0.1 for the action reverse cross entropy.

We use Adam [2] as the optimizer to perform gradient descent. The learning rate is set to 1e-4. The gradient is cut off
from the action network to the trajectory network. When training the joint model, we use ResNet pretrained on ImageNet to
initialize our ConvNet, and we also pretrain our trajectory network with trajectory forecasting. The number of epochs is 50
for training trajectory our joint model and 300 for training the separate model. The batch size is 16 and the sample number
of each data is 12. We report the results on the test set using the model that performs the best on the validation set.

5

4. Additional Evaluation Results

(a)

(b)

(c)

(d)

Figure 1. Forecasting results visualization. The figure shows the additional visualization results of four examples. It shows how the
forecasted trajectory influences the action distribution. In each example, the left top shows the observed images in the past 2 seconds, the
left bottom shows the action distributions corresponding to two forecasted sample trajectories, and the right shows the point cloud of the
scene and the forecasted trajectories. 6

4.1. Diversity Analysis

Our model can generate more diverse samples than the CVAE and the discriminative model, as measured by two new
metrics of diversity:

• The number of similar action sequences (N.Act). Two time-related (TR) action sequences count as similar if action a
occurs at time t in both sequences. Two time-unrelated (TU) action sequences count as similar if action a occurs at any
time in both sequences. Similar to [3], we apply temperature scaling on the Gumbel noise g with a factor of 0.3.

• The cosine similarity of generated samples (CoSim). We use this metric to evaluate both actions and trajectories.
We report the mean cosine similarity between

(
12
2

)
pairs. We also report another number in parentheses by setting a

similarity threshold 0.3 to determine whether two samples are different and count the number of different samples.

Trajectory Action

Method Traj CoSim (↓) N.Act (TR) (↑) N.Act (TU) (↑) Act CoSim (TR) (↓) Act CoSim (TU) (↓)
MRMC – 0.548 1.236 – –
CVAE 0.232 (2.83) 0.772 1.419 0.618 (2.05) 0.634 (2.39)
Ours 0.168 (4.13) 1.651 7.463 0.291 (4.38) 0.115 (8.83)

Table 2. Sample diversity evaluation results. (↓)/(↑) denotes a metric for which lower/higher scores are better.

4.2. Visualization Results

Fig. 1 shows additional visualization results of four examples. For each example, we show two sampled trajectories and
their corresponding action distribution. In all these examples, the forecasted trajectory influences the action distribution in a
meaningful way. In the first example (a), the person is washing hands. The wash action will be more likely to happen if the
person stays still, just as indicated by the first sampled trajectory and its action distribution. If the person moves a lot such
as in the second sampled trajectory, the model predicts the wash action is less likely to happen. In the second example (b),
the person moves less in the first forecasted trajectory than the second one. Thus, in the first trajectory, the object the person
interacts with in the observed frames, i.e. pan, will have a high probability in the future. In the second trajectory, although the
model does not predict the ground-truth object towel:kitchen correctly, the probability of take increases and the probability
of pan decreases, which indicates the person may take something else because the person moves more in this forecasted
trajectory. In the third example (c), the probability of turn-on and hob increases when the person moves and then stops, as
shown in the first sampled trajectory. However, if the person keeps moving like in the second trajectory, these two actions
will both have a low probability. In the fourth example (d), the large range of movement like the first sampled trajectory will
lead to a higher probability of take than put, because when taking something the person has to move around to fetch the item.

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 770–778, 2016. 4
[2] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. 5
[3] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. In Advances in Neural Information

Processing Systems, pages 10236–10245, 2018. 7
[4] Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher B Choy, Philip HS Torr, and Manmohan Chandraker. Desire: Distant

future prediction in dynamic scenes with interacting agents. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 336–345, 2017. 4

[5] Nicholas Rhinehart, Kris M Kitani, and Paul Vernaza. R2p2: A reparameterized pushforward policy for diverse, precise generative
path forecasting. In European Conference on Computer Vision, pages 794–811. Springer, Cham, 2018. 5

[6] Shai Shalev-Shwartz et al. Online learning and online convex optimization. Foundations and Trends R© in Machine Learning, 4(2):107–
194, 2012. 1

[7] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014. 5

[8] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and Luc Van Gool. Temporal segment networks: Towards
good practices for deep action recognition. In European Conference on Computer Vision, pages 20–36. Springer, 2016. 4, 5

[9] Min-Ling Zhang and Zhi-Hua Zhou. A review on multi-label learning algorithms. IEEE transactions on knowledge and data engi-
neering, 26(8):1819–1837, 2014. 5

7

