
Supplementary Materials for Through Fog High Resolution Imaging Using
Millimeter Wave Radar

Junfeng Guan Sohrab Madani Suraj Jog Saurabh Gupta Haitham Hassanieh
University of Illinois at Urbana-Champaign

Abstract

This supplementary material presents additional quali-
tative results from HawkEye. It also provides more detailed
descriptions of HawkEye’s GAN architecture, data collec-
tion hardware platform, and how the quantitative metrics
are extracted.

Appendix A: Additional Qualitative Results
We present additional qualitative results from HawkEye

in three categories. First, we show an example of Hawk-
Eye’s performance on the synthesized test dataset along
with the original 3D CAD model we use in our data syn-
thesizer (section 5) in Fig. 1. We only show one example of
HawkEye’s output on the synthesized test dataset, because
HawkEye can accurately recreate all detailed features as in
the synthesized ground-truth most of the time. Hence, we
focus on results from the real test dataset.

Second, we show HawkEye’s performance with rain in
the scene in Fig. 2, which is also part of our controlled ex-
periments (section 6). We use a water hose to emulate rain
around the object of interest (the car), and use HawkEye
to image through the emulated rain. We observe that de-
spite not being trained with such examples, HawkEye still
generalizes well with rain in the scene and captures the lo-
cation, orientation, size, and shape of the car. As we have
discussed in section 6.2, due to FCC regulations, we are
constrained to build our experimental setup at the 60 GHz
unlicensed spectrum, which suffers from higher attenuation
from water particles. We believe HawkEye’s performance
would further improve in inclement weather conditions by
implementing HawkEye’s mmWave radars at the 77 GHz
frequency band, which is allocated specifically for automo-
tive radar applications.

Finally, we also show additional randomly sampled qual-
itative results from HawkEye on the real test dataset in
Fig. 6 and Fig. 7. We can see that, in most cases, HawkEye
accurately depicts the location, orientation, size, and shape
of different car models in various background environments
and viewpoints.

Appendix B: Network Architecture and Imple-
mentation Details

HawkEye’s generator network (section 4) follows stan-
dard encoder-decoder architecture.

The encoder starts with one channel of 3D input (φ, θ, ρ)
of size 1× 64× 32× 96. There are 6 3D convolution layers
with kernel sizes=6 and strides=2 on all three dimensions.
With every convolution layer, the number of channels in-
creases, while the 3D feature map size decreases by half in
every dimension. We use a BatchNorm layer followed by
a Leaky-ReLU layer after every 3D convolution layer. The
encoder outputs a 2048 × 1 × 1 × 1 dimensional z-vector,
which is then squeezed to 2048×1×1. At each layer we ap-
propriately zero-pad the features in order to get the desired
input and output sizes.

The decoder begins with the 2048 × 1 × 1 dimen-
sional z-vector, and it contains 8 2D deconvolution layers.
The first deconvolution layer has a kernel size=(4, 3), and
stride=(2, 1) in order to get an output of size (2, 1). The
subsequent deconvolution layers have kernel sizes=4 and
strides=2 on both dimensions. Hence, each layer doubles
the feature map sizes and we also decrease the number of
channels. We use a BatchNorm layer followed by a ReLU
layer after every deconvolution layer. Again, at each layer
we appropriately zero-pad the features in order to get the de-
sired input and output sizes. This results in a output feature
map of size 1×256×128. We also use skip connections be-
tween the encoder and the decoder. Using the 3D heatmap
to 2D depth-map mapping defined in section 4, we obtain 8
channels of 2D feature maps of size 64 × 32. We concate-
nate them with the feature maps at the 6th deconvolution
layer along the channel axis. The concatenated feature map
then goes through the last deconvolution layer and a fully
connected layer. Finally, we apply the hyperbolic tangent
function alongside a linear transformation that maps the fi-
nal output between 0 and 1. This leads to the 256 × 128
generator output G(x).

The discriminator network (section 4) adopts a two-
stream architecture that uses two separate encoders to map
3D radar heatmaps and 2D depth-maps to 1D feature vec-

1



(a) (b) (d) (e)(c)

Figure 1: HawkEye’s performance on synthesized test data. Column (a) shows the original 3D CAD model of car. Column (b) shows the
corresponding synthesized ground-truth depth-map. Column (c) and (d) show the synthesized radar heatmap in the form of 3D point-cloud
and 2D front-view projection respectively. Column (e) shows the HawkEye output.

(a) (b) (d) (e)(c)

Figure 2: HawkEye’s performance with rain in scene. Column (a) shows the original scene. Column (b) shows the scene with rain.
Column (c) and (d) show the radar heatmap in the form of 3D point-cloud and 2D front-view projection respectively. Column (e) shows
the HawkEye output.

tors. The encoder for 3D radar heatmaps comprises the gen-
erator’s encoder architecture resulting in 512 dimensional
output vector z′. The encoder for 2D depth-maps takes
the ground-truth y or the generator output G(x) as input
and also outputs a 512 dimensional vector z′′. It has 8 2D
convolution layers with kernel sizes = 4 and strides = 2
on both dimensions with appropriate zero-padding. Each
convolution layer is followed by a BatchNorm layer and
a Leaky-ReLu layer. z′ and z′′ are then concatenated and
fed into two fully connected layers with ReLu and Dropout
layers in between. Finally, we use the sigmoid activation
function to get the output probability of the discriminator.

To calculate the perceptual loss, we feed HawkEye’s
output G(x) and the corresponding ground-truth y into a
pretrained VGG16 [5] model, by replicating G(x) and y to
three channels. We obtain outputs of the VGG model at the
3rd, 8th, 15th, and 22nd layers for G(x) and y. Then we
compute the L1 difference of the outputs at each layer and
normalize them to get the perceptual loss Lp(G). We set the
weight forL1(G) andLp(G) to be λ1 = 1000 and λp = 20.

We train HawkEye with the Adam optimizer and batch
size=4 on an Nvidia Titan RTX GPU. We start with a learn-
ing rate=10−4 for the first 100 epochs. We the linearly de-

cay the learning rate to zero for another 70 epochs. Lastly,
in the fine-tuning stage, we use a learning rate of 10−5.

The runtime for HawkEye’s 3D mmWave heatmap to
higher-resolution depth-map translation is 23ms per image
on a single Nvidia Titan RTX GPU.

Appendix C: Data Collection Platform

We collect our own dataset, which includes 3D mmWave
radar heatmaps of cars and the corresponding stereo cam-
era depth-maps. We built a mmWave imaging system using
60 GHz radios and a SAR (Synthetic Aperture Radar) plat-
form. We send standard FMCW radar waveform generated
by our custom-build FMCW circuit.

We leverage SAR to emulate a 2D antenna array by me-
chanically scanning a single mmWave radio. We opt for
SAR-based implementation because of the limited avail-
ability of 2D phased arrays with hundreds of antennas
like [4, 7] in commercial systems and the high flexibility of
SAR. SAR provides us with a reconfigurable antenna array
for a wide range of frequencies and aperture sizes, which
allows us to generate radar heatmaps with different resolu-
tions. We build a 2D SAR platform shown in Fig. 3 using
three FUYU FSL40 linear sliders [6] with sub-millimeter

2



Figure 3: Data Collection Platform

accuracy. We mount a Pasternack 60 GHz radio front-
end [2] on the SAR platform as the receiver, and another
radio on the side as the transmitter. We use omni-directional
antennas for both the transmitter and receiver to have a max-
imum field-of-view of 180◦ in azimuth and 35◦ in elevation.
We also place RF absorbers and shields around the anten-
nas to eliminate the direct path leakage and unwanted re-
flections from the backside. The horizontal slider scans the
mounted receiver radio along the X-axis, while two vertical
sliders scan along the Z-axis. In HawkEye, only a fraction
of 20cm× 20cm area is scanned to emulate a 40× 40 array
at 60 GHz, which provides ∼ 8◦ angular resolution along
azimuth and elevation axes. The scanning time is 5 minutes
and reduces to 90 seconds for a 20× 20 array.

For the mmWave radar circuit, we implement a hetero-
dyne architecture, as shown in Fig. 4. We first generate
the same FMCW waveform at baseband using ADF4159
PLL (Phased Locked Loop) [1], with a bandwidth of 1.5
GHz sweeping from 0.1 GHz to 1.6 GHz. Then we up-
convert it to have a center frequency of 60.15 GHz using
quadrature modulation. The resulting signal sweeps from
59.4 GHz to 60.9 GHz with the other unwanted sideband
suppressed. The FMCW receiver has a reciprocal archi-
tecture. The reflected signals at 60 GHz are first down-
converted to the baseband through quadrature demodula-
tion to get 90◦ phase-shifted I and Q channels. Then we
feed them separately into RF mixers along with the origi-
nal baseband FMCW waveforms to extract the beat signal,
whose frequency is proportional to the time-of-flight of the
radar waveform in the air. We sample the I and Q com-
ponents of the complex beat signal with two N210 USRP
software-defined radios [3] for direct phase measurement.

FMCW Generator
(PLL)

mmWave
Tx

mmWave
Rx

mmWave
Rx

Quadrature

USRP

USRP
Q

Hybrid
Splitter

LO
0

90

In‐Phase

I

Tx I

Tx I‐

Figure 4: Millimeter Wave Imaging Radar Circuit Diagram

(i) Top View of Scene

⍺
Orientation

(ii) Front View of Scene

(iii) Front View Object Mask

Figure 5: Quantitative Metrics

We use a common clock to enforce frequency and phase
synchronization in the radar circuit.

We then align the continuously sampled complex beat
signal to the antenna positions in the array. In this pro-
cess, we track the SAR trajectory by leveraging the phase
shift in the residual direct path leakage. We then apply
Fast Fourier Transform and conventional beamforming in
sequence to estimate the reflected signal power from every
voxel x(φ, θ, ρ) to generate the 3D mmWave radar heatmap.

Appendix D: Extracting Quantitative Metrics

We evaluate on range, size (length, width, height), and
orientation of the car, as they represent the contextual in-
formation of the car in the scene (shown in Fig. 5(i)). We
define the distance to the closest corner of the car as the
range, and orientation as the angle between the longer edge
of the car and the 0◦ azimuth of the mmWave heatmap.
First, we convert depth maps into 3D point clouds in the
camera frame based on the mapping from pixel values to
metric depth as shown in the scale bars. Then we estimate
the bounding boxes of cars by projecting the point clouds
onto the horizontal plane and fitting the points into either a
90-degree corner or a straight line. For radar heatmaps, we
manually annotate the bounding boxes in the 2D top-view
projections, similar to Fig.3(c). Finally, we fill up the oc-
cluded parts of the bounding boxes and extract the metrics.

3



(a) (b) (d) (e)(c)

Figure 6: Randomly sampled qualitative results from HawkEye. Column (a) shows the original scene. Column (b) shows the corresponding
ground truth. Column (c) and (d) show the radar heatmap in the form of 3D point-cloud and 2D front-view projection respectively. Column
(e) shows the HawkEye output. Continued on next page.

Range, length, width, and orientation of the cars are com-
putable from the corners and edges of the top-view bound-
ing boxes, while heights are estimated from the 3D points
inside the bounding boxes.

We also evaluate accuracy in shape prediction by com-
paring (a) % of Car’s Surface Missed (False Negatives) and
(b) % of Fictitious Reflections (False Positives) in the ob-
ject masks of HawkEye’s output along the front view of the

scene as shown in Fig. 5(ii,iii). Note that (a) is indicative of
the specularity effects whereas (b) is indicative of artifacts
such as multipath and ambient reflections in the image. We
extract the object masks from the mmWave heatmap and the
outputs of HawkEye and baseline methods separately, and
then compute the False Positive Rates (FPR) and False Neg-
ative Rates (FNR) against the ground truth object masks.
We obtain the ground truth object mask by applying Mack-

4



(a) (b) (d) (e)(c)

Figure 7: Randomly sampled qualitative results from HawkEye. Column (a) shows the original scene. Column (b) shows the corresponding
ground truth. Column (c) and (d) show the radar heatmap in the form of 3D point-cloud and 2D front-view projection respectively. Column
(e) shows the HawkEye output.

RCNN on the camera image. For the depth map outputs
of HawkEye and the baseline methods of L1 and Nearest
Neightbor, we eliminate noise that are far away from the
object body using a distance threshold, so that the remain-
ing pixels in the region of the object form the mask. For
mmWave heatmaps, we project the 3D heatmaps onto the
front-view plane and then select pixels exceeding a power
threshold as the object mask. We choose the distance and

power thresholds from the ROC (Receiver operating char-
acteristic) curves.

References
[1] Analog Devices. Adf4159 pll. https://www.analog.

com/en/products/adf4159, 2014.
[2] Pasternack. 60 ghz development system. https://www.

pasternack.com, 2014.

5

https://www.analog.com/en/products/adf4159
https://www.analog.com/en/products/adf4159
https://www.pasternack.com
https://www.pasternack.com


[3] Ettus Research. Usrp n210. https://www.ettus.com/
all-products/un210-kit, 2012.

[4] S. Shahramian, M. J. Holyoak, A. Singh, and Y. Baeyens. A
fully integrated 384-element, 16-tile, w -band phased array
with self-alignment and self-test. IEEE Journal of Solid-State
Circuits, 54(9):2419–2434, 2019.

[5] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[6] FUYU Technology. Linear motion guide.
https://www.fuyumotion.com/products/
linear-motion-guide, 2020.

[7] S. Zihir, O. D. Gurbuz, A. Kar-Roy, S. Raman, and G. M. Re-
beiz. 60-ghz 64- and 256-elements wafer-scale phased-array
transmitters using full-reticle and subreticle stitching tech-
niques. IEEE Transactions on Microwave Theory and Tech-
niques, 64(12):4701–4719, 2016.

6

https://www.ettus.com/all-products/un210-kit
https://www.ettus.com/all-products/un210-kit
https://www.fuyumotion.com/products/linear-motion-guide
https://www.fuyumotion.com/products/linear-motion-guide



