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1. Pose evaluation

In Table 1 we show the results of our proposed PackNet-
SfM framework on the KITTI odometry benchmark [3].
To compare with related methods, we train our framework
from scratch on sequences 00-08 of the KITTI odometry
benchmark, with exactly the same parameters and networks
used for depth evaluation (Table 3, main text). For consis-
tency with related methods, we compute the Absolute Tra-
jectory Error (ATE) averaged over all overlapping 5-frame
snippets on sequences 09 and 10. Note that our pose net-
work only takes two frames as input, and outputs a single
transformation between that pair of frames. To evaluate our
model on 5-frame snippets we combine the relative trans-
formations between the target frame and the first context
frame into 5-frame long overlapping trajectories, i.e. we
stack fx (It, It−1) = xt→t−1 to create appropriately sized
trajectories.

The ATE results are summarized in Table 1, with our
proposed framework achieving competitive results relative
to other related methods. We also note that all these related
methods are trained in the monocular setting (M), and there-

fore scaled at test-time using ground truth information. Our
method, on the other hand, when trained with the proposed
velocity supervision loss (M+v) does not require ground-
truth scaling at test-time, as it is able to recover metrically
accurate scale purely from monocular imagery. Neverthe-
less, it is still able to achieve competitive results compared
to other methods. Examples of reconstructed trajectories
obtained using PackNet-SfM for the test sequences can be
found in Figure 1.

2. Dense Depth for Automated Driving
(DDAD)

In this section, we provide a brief overview of our newly
introduced DDAD (Dense Depth for Automated Driving)
dataset and the relevant properties that make it desirable as
a dense depth estimation benchmark. It includes a high-
resolution, long-range Luminar-H21 as the LiDAR sensor
used to generate pointclouds, with a maximum range of
250m and sub-1cm range precision. Additionally, it con-

1https://www.luminartech.com/technology

Method Supervision Resolution GT Seq. 09 Seq. 10

SfMLearner (Zhou et al. [7]) M 416 x 128 X 0.021 ± 0.017 0.020 ± 0.015
Monodepth2 (Godard et al. [4]) M 640 x 192 X 0.017 ± 0.008 0.015 ± 0.010
DF-Net (Zou et al. [8]) M 576 x 160 X 0.017 ± 0.007 0.015 ± 0.009
Vid2Depth (Mahjourian et al. [5]) M 416 x 128 X 0.013 ± 0.010 0.012 ± 0.011
GeoNet (Yin et al. [6]) M 416 x 128 X 0.012 ± 0.007 0.012 ± 0.009
Struct2Depth (Casser et al. [2]) M 416 x 128 X 0.011 ± 0.006 0.011 ± 0.010
TwoStreamNet (Ambrus et al. [1]) M 640 x 192 X 0.010 ± 0.002 0.009 ± 0.002

PackNet-SfM M 640 x 192 X 0.011 ± 0.006 0.009 ± 0.007
PackNet-SfM M+v 640 x 192 X 0.010 ± 0.005 0.009 ± 0.008
PackNet-SfM M+v 640 x 192 0.014 ± 0.007 0.012 ± 0.008

Table 1: Average Absolute Trajectory Error (ATE) in meters on the KITTI Odometry Benchmark [3]: All methods
are trained on Sequences 00-08 and evaluated on Sequences 09-10. The ATE numbers are averaged over all overlapping
5-frame snippets in the test sequences. M+v refers to velocity supervision (v) in addition to monocular images (M). The GT
checkmark indicates the use of ground-truth translation to scale the estimates at test-time.
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Figure 1: Pose evaluation on KITTI test sequences. Qualitative trajectory results of PackNet-SfM on test sequences 09 and
10 of the KITTI odometry benchmark.

tains six calibrated cameras time-synchronized at 10 Hz,
that together produce a 360◦ coverage around the vehicle.
Note that in our work we only use information from the
front-facing camera for training and evaluation.

Examples of a Luminar-H2 pointcloud projected onto
each of these six cameras are shown in Figures 2, 3 and
4, for different urban settings. The depth maps generated
from projecting these Luminar pointclouds onto the cam-
era frame allow us to evaluate depth estimation methods in
a much more challenging way, both in terms of denseness
and longer ranges. In Table 2 and Figure 6 of the main text
we show how our proposed PackNet architecture outper-
forms other related methods under these conditions. In fact,
the gap in performance increases when considering denser
ground-truth information at longer ranges, both on the en-
tire interval and at discretized bins.

DDAD is a cross-continental dataset with scenes drawn
from urban settings in the United States (San Francisco
Bay Area, Detroit and Ann Arbor) and Japan (Tokyo and
Odaiba). Each scene is 5 or 10 seconds long and consists of
50 or 100 samples with corresponding Luminar-H2 point-
cloud and six image frames, including intrinsic and extrinsic
calibration. The training set contains 194 scenes with a total
of 17050 individual samples, and the validation set contains
60 senes with a total of 4150 samples. The six cameras are
2.4 MP (1936 × 1216), global-shutter, and oriented at 60°
intervals. They are synchronized with 10 Hz scans from our
Luminar-H2 sensors oriented at 90° intervals.
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Figure 2: DDAD sample from Tokyo, Japan.



Figure 3: DDAD sample from San Francisco Bay Area, California.

Figure 4: DDAD sample from Detroit, Michigan.
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