Hit-Detector: Hierarchical Trinity Architecture Search for Object Detection Supplementary Material Jianyuan Guo^{1,2}, Kai Han², Yunhe Wang², Chao Zhang¹, Zhaohui Yang¹ Han Wu¹, Xinghao Chen², Chang Xu³ jyguo@pku.edu.cn, kai.han@huawei.com, chzhang@cis.pku.edu.cn In this supplementary material, we list the search space and corresponding sub search spaces for detector trinity in details, and we show the qualitative results of our Hit-Detector compared with other state-of-the-art methods. ## 1. Search Space The whole search space consists of N=32 different operation candidates in our experimental setting. We list the candidates bellow: - ir_k3_d1_e1 ir_k3_d1_e3 ir_k3_d1_e6 - ir_k3_d2_e1 ir_k3_d2_e3 ir_k3_d2_e6 - ir_k3_d3_e1 ir_k3_d3_e3 ir_k3_d3_e6 - ir_k5_d1_e1 ir_k5_d1_e3 ir_k5_d1_e6 - ir_k5_d2_e1 ir_k5_d2_e3 ir_k5_d2_e6 - ir_k5_d3_e1 ir_k5_d3_e3 ir_k5_d3_e6 - ir_k7_d1_e1 ir_k7_d1_e6 - sep_k3_d1 sep_k3_d2 sep_k3_d3 - sep_k5_d1 sep_k5_d2 sep_k5_d3 - conv_k3_d1 conv_k3_d2 conv_k3_d3 - conv_k5_d1 conv_k5_d2 conv_k5_d3 where "ir", "sep" and "conv" indicates the inverted residual block, separable block and convolution block, respectively, "k" indicates the kernel size, "d" indicates the dilation rate, "e" indicates the expansion rate of inverted residual block. #### 2. Sub search space In our experiments, we set $N_b = N_n = N_h = 8$, and we list the top-8 operation candidates for **backbone**: - ir_k3_d1_e3 ir_k3_d1_e6 ir_k3_d2_e3 - ir_k5_d1_e3 ir_k5_d1_e3 ir_k5_d2_e6 - ir_k5_d3_e6 ir_k7_d1_e6 The top-8 operation candidates for **neck**: - conv_k3_d3 conv_k5_d1 ir_k3_d2_e1 - ir_k5_d1_e3 sep_k3_d1 sep_k3_d3 - sep_k5_d2 sep_k5_d3 The top-8 operation candidates for **head**: - ir_k3_d1_e3 ir_k3_d1_e6 ir_k3_d2_e6 - ir_k5_d1_e3 ir_k5_d1_e6 ir_k7_d1_e6 - conv_k3_d1 conv_k5_d1 ### 3. Qualitative results We show the qualitative results of our Hit-Detector. We randomly sample some images from the COCO minival and show detection results with confidence bigger than 0.5. First column is the results of FPN [3], second column is the results of NAS-FPN [2] implemented by ourselves, third column is the results of DetNAS [1], and the fourth column is the results of our Hit-Detector. Different box colors indicate different object categories. #### References - [1] Yukang Chen, Tong Yang, Xiangyu Zhang, Gaofeng Meng, Chunhong Pan, and Jian Sun. Detnas: Neural architecture search on object detection. In *arXiv preprint:1903.10979*, 2019. 1, 2, 3 - [2] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Nas-fpn: Learning scalable feature pyramid architecture for object detection. In CVPR, 2019. 1, 2, 3 - [3] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. Feature pyramid networks for object detection. In *CVPR*, 2017. 1, 2, 3 ¹ Key Lab of Machine Perception (MOE), Dept. of Machine Intelligence, Peking University. ² Noah's Ark Lab, Huawei Technologies. ³ School of Computer Science, Faculty of Engineering, University of Sydney. ^{*}Corresponding author.