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1. SPARE3D-CSG
Why CSG models? CSG models are randomly generated
from simple primitives, like sphere, cube, cone, and torus,
with boolean operations including union, intersection, and
difference. Therefore, it allows us to control the complex-
ity of 3D models. In the SPARE3D-CSG dataset, we gen-
erate three sets of 4000 3D models, i.e., a total of 12000,
from two, three, and four simple random primitives respec-
tively. With more primitives in a model, the complexity
of the model increases, and so does the difficulty level of
SPARE3D-CSG tasks generated from those models.

When generating tasks for view consistency reasoning
and camera pose reasoning, for training and testing dataset,
we select the same number of 2D drawings from two, three,
and four simple primitive model sets. In this way, we ensure
that our baseline methods are trained and tested on tasks
with the same difficulty levels.

CSG model generation. Most of the objects in the real
world look reasonably regular in shape because they are
usually designed and organized in certain rules manually.
The SPARE3D-CSG dataset is generated using the follow-
ing two rules. First, to create a CSG model from simple
primitives, rotation angles for these primitives are randomly
selected from 0◦, 90◦, 180◦, and 270◦. Second, these prim-
itives are only rotated about X , Y , or Z axes. Example
models can be seen from Figure 1.

2. Baseline Methods Formulation
We formulate the 3-View to Isometric and Pose to Iso-

metric tasks as either binary classification or metric learn-
ing. The Pose to Isometric task is formulated as the multi-
class classification. Isometric View Generation is treated
as conditional image generation, Point Cloud Generation is
expressed as 3D point cloud generation from multi-view im-
age. In this section, we use IF , IT , and IR to represent line
drawings from the front, top, and right view, respectively,
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each of which is a 3-channel RGB image. The backbone
neural networks are represented as feature extraction func-
tion f for each task. The detailed formula of each task is
shown in the following subsections.

2.1. Three-View to Isometric

Binary Classification. IF , IT , IR, and a query image Iq
from the choices are concatenated along the feature dimen-
sion, to form a 12-channel composite image Ic. Then a
CNN-based binary classifier fθ : R12×H×W → [0, 1] is
trained to map Ic to p̂(θ), which is the probability that Iq
is the isometric image. θ represents the parameters of the
neural network. Binary cross-entropy (BCE) loss is applied
to train the neural nework:

L(θ) = −p log p̂(θ)− (1− p) log (1− p̂(θ)), (1)

where p ∈ Z2 is the ground truth label of whether Iq is the
isometric drawing consistent with the input.

We take four images (three images from the question and
one image from answer) as a group. Therefore, each time,
we have four groups of data to process. We use VGG and
ResNet to encode a group of images to a feature vector in
R1 space. Then we concatenate four feature vectors and use
softmax to get a 4× 1 vector of distribution probability.

Metric Learning. IF , IT , and IR are concatenated to
form a 9-channel composite image Ic. Then Ic is fed into a
CNN-based encoder fθ : R9×H×W → RM . A query image
Iq from the choices is fed into another CNN-based encoder
gφ : R3×H×W → RM . θ and φ represent the parameters
of the two neural networks respectively. We use l2 distance
d(θ, φ) = ‖fθ(Ic) − gθ(Iq)‖ to measure the correctness of
Iq . Smaller d(θ, φ) indicates higher correctness that Iq is
the isometric image among the four choices. We apply mar-
gin ranking loss to train the networks:

L(θ, φ) =
3∑
k=1

max (0, dc(θ, φ)− dkw(θ, φ) +m), (2)

where dc(θ, φ) is the correctness measurement of the cor-
rect Iq , and dkw(θ, φ) is the correctness measurement of the
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Figure 1. CSG model examples. In each example chunk, the first three columns are F, T, R drawings, respectively; the fourth column is
the rendered CSG model (seeing from pose 2 as explained in the main paper). The models in the second row, third row, and fourth row are
generated from two, three, and four simple primitives, respectively.

kth wrong Iq . m = 2 is the margin we use during training.
We set M = 128 in this task.

2.2. Isometric to Pose

Multi-class Classification. IF , IT , IR and the isometric
image Ii are concatenated to form a 12-channel composite
image Ic. Then a CNN-based classifier fθ : R12×H×W →
[0, 1]4 is trained to map Ic to a four-vector p̂(θ) =
[p̂1(θ), p̂2(θ), p̂3(θ), p̂4(θ)]

T that represents the probabil-
ity of Ii is taken at pose 1, 5, 2 and 6 respectively. Cross-
entropy loss is applied to train the neural network.

L(θ) = −
4∑
k=1

pk log p̂k(θ), (3)

where pk = 1 if Ii is taken at the kth view point. For this
task, we encode the concatenated four images in the ques-
tion into a R4 feature vector using function F. Then we use
softmax to get the probability distribution and compute the
cross-entropy loss between the feature vector and the en-
coding of the answer.

2.3. Pose to Isometric

Binary Classification. IF , IT , IR and a query image Iq
from the choices are concatenated to form a 12-channel
composite image Ic. This composite image is fed into
a CNN f : R12×H×W → RK . Then, we concatenate
the output with a 8-dimensional one-hot vector z ∈ Z8

2,
representing the given camera pose to create a codeword

c ∈ RK × Z8
2. c is then fed into a fully-connected network

gφ : RK × Z8
2 → [0, 1]. We apply BCE loss as equation (1)

to train the neural network. Here we set K = 128.

Metric Learning. Similar to the binary classification for-
mulation, we again obtain c ∈ RK × Z8

2 from IF , IT ,
IR and z. c is then fed into a fully-connected network
gθ : RK × Z8

2 → RM . For each answer image, we ob-
tain a feature vector in RM space using another CNN-based
encoder hω : R3×H×W → RM . Then we can caculate the
margin ranking loss similar to equation (2). In our experi-
ment, K = 128 and M = 50.

2.4. Isometric View Generation

For this task, we use Pix2Pix [2], a conditional genera-
tive adversarial network, to generate the isometric drawing
for each question. The generator network G(x) needs to
learn a mapping from the three-view drawings to the iso-
metric drawing. The input x is a R9×H×W tensor gener-
ated by concatenating F, R, T images. When training the
pix2pix model on our dataset, we use label flipping and la-
bel smoothing to improve the stability of the model.

2.5. Point Cloud Generation

We use a FoldingNet [3]-like and AtlasNet [1]-like de-
coding architectures to generate a 3D object’s point cloud
with 2025 points from a latent code c ∈ R512, which is en-
coded by a ResNet-18 CNN from a 9-channel concatenated
F, T, R image tensor.



3. Implementation Details of Baseline Methods
In SPARE3D-ABC, we use ResNet-50, VGG-16, and

BagNet as our deep network architectures for 3-View to Iso-
metric, Pose to Isometric, and Isometric to Pose tasks, to
extract features from given drawings. The network architec-
ture details are explained below for each baseline method.

All the hyper-parameters in each baseline method for
each task, whose drawings are generated from models in
ABC dataset, are tuned using a validation set of 500 ques-
tions, although we have not searched for the optimal hyper-
parameters extensively using methods like grid search.

3.1. 3-View to Isometric

Binary classification. We slightly modify the ResNet-50
base network to adapt to our tasks. The first convolutional
layer has 12 input channels, 64 output channels, with kernel
size (3, 3), instead of the original (7, 7), stride and padding
(1, 1), instead of the original stride(2, 2) and padding (3, 3).
The last fully-connected layer maps the feature vector from
R2048 → R1. Other layers are exactly the same as the
original ResNet-50 network. And the above modifications
are applied to all the remaining baseline methods involving
ResNet-50. The learning rate is 0.00005, the batch size is
9, and the network is trained for 50 epochs.

Similarly, for the VGG-16 network, the first convolu-
tional layer is modified in the same way as ResNet-50.
The last fully-connected layer maps the feature vector from
R4096 → R1. The learning rate is 0.00005, the batch size is
20, and the network is trained for 50 epochs.

For the BagNet-33 base network, the first convolutional
layer has 12 input channels, 64 output channels, with kernel
size 1, stride 1, padding 0. The last fully-connected layer
maps the feature vector from R2048 → R1. The learning
rate is 0.0001, the batch size is 8, and the network is trained
for 49 epochs.

Metric learning. In this formulation, two functions, f
and g, are implemented using two similar base networks
for extracting features from drawings in questions and in
answers, respectively.

ResNet-50 as the base network: For f , the first con-
volutional layer has 9 input channels, 64 output channels,
with kernel size (3, 3), stride and padding (1, 1). The last
fully connected layer maps the feature vector from R2048 →
R128. For g, the first convolutional layer has 3 input chan-
nels, 64 output channels, with kernel size (3, 3), stride and
padding (1, 1). The last fully connected layer is the same as
f . The learning rate is 0.0001, the batch size is 4, and the
network is trained for 50 epochs.

VGG-16 as the base network: For f , the first convolu-
tional layer is the same as ResNet-50 f for metric learning
in 3-View to Isometric. The last fully-connected layer maps

the feature vector from R4096 → R128. For g, the first con-
volutional layer is the same as ResNet-50 g for metric learn-
ing in 3-View to Isometric. The last fully connected layer is
the same as f in this method. The learning rate is 0.00002,
the batch size is 8, and the network is trained for 50 epochs.

BagNet-33 as the base network: For f , the first con-
volutional layer has 9 input channels, 64 output channels,
with kernel size 1, stride 1 and padding 0. The last fully-
connected layer maps the feature vector from R2048 →
R128. For g, the first convolutional layer has 3 input chan-
nels, 64 output channels, with kernel size 1, stride 1 and
padding0. The last fully connected layer is the same as f in
this method. The learning rate is 0.0001, the batch size is 4,
and the network is trained for 50 epochs.

3.2. Isometric to Pose

Multi-class classification. For ResNet-50, the first con-
volutional layer is the same as the ResNet-50 network in
binary classification for 3-View to Isometric. The last fully-
connected layer maps the feature vector from R2048 → R4.
The learning rate is 0.00002, the batch size is 70, and the
network is trained for 50 epochs.

For VGG-16, the first convolutional layer is the same as
the VGG-16 network in binary classification for 3-View to
Isometric. The last fully-connected layer maps the feature
vector from R4096 → R4. The learning rate is 0.00002, the
batch size is 80, and the network is trained for 50 epochs.

For BagNet, the first convolutional layer is the same as
the BagNet network in binary classification for 3-View to
Isometric. The last fully-connected layer maps the feature
vector from R2048 → R4. The learning rate is 0.00002, the
batch size is 30, and the network is trained for 50 epochs.

3.3. Pose to Isometric

Binary classification. For ResNet-50, the first convolu-
tional layer is the same as the ResNet-50 network in binary
classification for 3-View to Isometric. A fully connected
layer maps the feature vector from R2048 → R128. Af-
ter concatenating with a one-hot encoder Z8

2, a fully con-
nected layer maps the concatenated feature vector from
R136 → R1. The learning rate is 0.00002, the batch size
is 9, and the network is trained for 50 epochs.

For VGG-16, the first convolutional layer is the same as
the VGG-16 network in binary classification for 3-View to
Isometric. The last fully-connected layer maps the feature
vector from R4096 → R128. The last layer is the same as
the ResNet-50 network in binary classification for Pose to
Isometric. The learning rate is 0.0001, the batch size is 30,
and the network is trained for 50 epochs.

For BagNet, the first convolutional layer is the same as
the BagNet network in binary classification for 3-View to
Isometric. A fully connected layer maps the feature vec-
tor from R2048 → R128. The last layer is the same as the



ResNet-50 network in binary classification for Pose to Iso-
metric. The learning rate is 0.00005, the batch size is 8, and
the network is trained for 50 epochs.

Metric learning. Similar to the metric learning formula-
tion for the task “3-View to Isometric”, there are two func-
tions f and g used to extract features from drawings in the
question and the answers respectively.

For ResNet-50, the first convolutional layer of f is the
same as ResNet-50 f for metric learning in 3-View to Iso-
metric. The fully connected layer maps the feature vector
from R2048 → R128. After concatenating with a one-hot
encoder Z8

2, a linear layer maps the concatenated feature
vector from R136 → R50. For g, the first convolutional
layer is the same as ResNet-50 g for metric learning in 3-
View to Isometric. The last fully-connected layer maps the
feature vector from R2048 → R50. The learning rate is
0.00001, the batch size is 4, and the network is trained for
47 epochs.

For VGG-16, the first convolutional layer of f is the
same as VGG-16 f for metric learning in 3-View to Iso-
metric. The fully connected layer maps the feature vector
from R4096 → R128. For g, the first convolutional layer
is the same as VGG-16 g for metric learning in 3-View to
Isometric. The last fully-connected layer maps the feature
vector from R4096 → R50. Other architectures are the same
as VGG-16 for metric learning in Pose to Isometric. The
learning rate is 0.000005, the batch size is 10, and the net-
work is trained for 42 epochs.

For BagNet-33, the first convolutional layer of f is the
same as BagNet f for metric learning in 3-View to Isomet-
ric. For g, the first convolutional layer is the same as Bag-
Net g for metric learning in 3-View to Isometric. Other ar-
chitectures are the same as BagNet for metric learning in
Pose to Isometric. The learning rate is 0.0001, the batch
size is 4, and the network is trained for 41 epochs.

3.4. Isometric View Generation

As mentioned in the baseline method part, we use the
Pix2Pix network to generate isometric drawings for each
question. The first layer has 9 input channels.

3.5. Point Cloud Generation

For FoldingNet-like and AtlasNet-like architectures, the
number of output points for a 3D object is 2025. The la-
tent code is c ∈ R512. Other architectures are the same as
in FoldingNet paper and AtlasNet paper, respectively, ex-
cept that the original point cloud encoder is replaced with
a ResNet-18 with 9 input channels. The network is trained
for 1000 epochs.

3.6. Crowd-sourcing Website

Figure 2, 3 and 4 show our crowd-sourcing website for
collecting human performance, with example questions for
each tasks respectively.
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Figure 2. Examples of the “3-View to Isometric” task shown in our crowd-sourcing website. Correct answers are highlighted by green
rectangles. Best view in color.



Figure 3. Examples of the “Isometric to Pose” task shown in our crowd-sourcing website. Correct answers are highlighted by green
rectangles. Best view in color.



Figure 4. Examples of the “Pose to Isometric” task shown in our crowd-sourcing website. Correct answers are highlighted by green
rectangles. The eight poses are explained on the left column of the first row, and also in each question. Best view in color.


