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1. Baseline Algorithms
Here we document the algorithms taken from prior work

that we use as baselines for our proposed model.

1.1. Contrast-Based Baseline Algorithms

As a point of comparison for our proposed model, we
implemented a number of contrast-based autofocus algo-
rithms (or equivalently, patch-based depth-from-defocus al-
gorithms) and evaluated them as baselines on our task.
When selecting what baselines to implement, we prioritized
top-performing techniques according to a relatively recent
survey paper [14]. Given a focal stack of images {I} we
compute a contrast score φ for each I , and we return the
index into the focal stack that maximizes φ.

Intensity Variance [8]: The variance of the intensity val-
ues of the entire image.

φ = Var(I) (1)

Intensity Coefficient of Variation [8]: The coefficient of
variation of the intensity values of the entire image, which
is the standard deviation of the intensity values divided by
their mean. Similar metrics are sometimes referred to in
past work as “normalized variance”.

φ =

√
Var(I)

µ(I)
(2)

Total Variation (L1) [11, 15]: The total absolute differ-
ence between the intensity value of all pixels and their (4-
connected) neighbors:

φ =
∑
x,y

|I[x, y]− I[x+ 1, y]|+ |I[x, y]− I[x, y + 1]|

(3)

Total Variation (L2) [15]: The total squared difference
between the intensity value of all pixels and their (4-
connected) neighbors. This is sometimes referred to as

“gradient energy”:

φ =
∑
x,y

(I[x, y]− I[x+ 1, y])
2

+ (I[x, y]− I[x, y + 1])
2

(4)

Energy of Laplacian [17]: The image is convolved by a
discrete Laplace operator, and the response are squared and
summed.

φ =
∑
x,y

∆[x, y]2, ∆ = I ∗

0 1 0
1 −4 1
0 1 0

 (5)

Laplacian Variance [13]: The image is convolved by a
discrete Laplace operator, and the global variance of the re-
sponse is computed.

φ = Var(∆[x, y]), ∆ = I ∗

0 1 0
1 −4 1
0 1 0

 (6)

Sum of Modified Laplacian [12]: The image is con-
volved by a 1D discrete Laplace operator in x and y, and
the absolute values of each filter response are summed.

φ =
∑
x,y

∆[x, y], ∆ = |I ∗ Lx|+ |I ∗ Ly|

Lx =

0 0 0
1 −2 −1
0 0 0

 , Ly = LT
x (7)

Diagonal Laplacian [19]: This is the same as the “sum of
modified Laplacian” approach, but augmented with diago-
nal Laplacian filters as well.

φ =
∑
x,y

∆[x, y]

∆ = |I ∗ Lx|+ |I ∗ Ly|+ |I ∗ Lxy|+ |I ∗ Lyx|

Lxy =
1√
2

0 0 1
0 −2 0
1 0 0

 , Lyx = LT
xy (8)
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Mean Gradient Magnitude [18]: The mean gradient
magnitude, where the gradient is computed using the norm
of the response of Sobel filters. This is sometimes referred
to as “Tenengrad”.

φ =
1

n

∑
x,y

√
∇x[x, y]2 +∇y[x, y]2 (9)

∇x = I ∗

−1 0 +1
−2 0 +2
−1 0 +1

 , ∇y = I ∗

−1 −2 −1
0 0 0

+1 +2 +1


Gradient Count [8]: The total number of edges in the im-
age whose magnitude is above some threshold t, where the
gradient magnitude is again computed using Sobel filters.

φ =
1

n

∑
x,y

[|∇x[x, y]| > t] + [|∇y[x, y]| > t] (10)

Gradient Magnitude Variance [13]: The global vari-
ance of gradient magnitudes, where gradients are again
computed using Sobel filters.

φ = Var

(√
∇x[x, y]2 +∇y[x, y]2

)
(11)

Percentile Range: The difference between the 100−p’th
percentile and the p’th percentile of intensity values in the
image. When p = 0, this is the difference between the
maximum and minimum pixel intensities in the image.

φ = percentile(I, 100− p)− percentile(I, p) (12)

Histogram Entropy [8]: The Shannon entropy of all
pixel intensities in the image.

φ = −
∑
i

ni log(ni), n = hist(I) (13)

DCT Energy Ratio [3]: The squared sum of all DCT co-
efficients of the image without the DC component, divided
by the squared DC component.

φ =
(
∑

u,v D[u,v]2)−D[0,0]2

D[0,0]2 , D = DCT(I)
(14)

DCT Reduced Energy Ratio [10]: The squared sum of
the 5 lowest order DCT coefficients (excluding the DC com-
ponent) divided by the squared DC component.

φ =
D[0, 1]2 +D[1, 0]2 +D[0, 2]2 +D[1, 1]2 +D[2, 0]2

D[0, 0]2

(15)

Modified DCT [9]: The total filter response of the image
convolved with a checkerboard-like filter, which is some-
what related to the DCT of the image.

φ =
∑
x,y

I ∗


+1 +1 −1 −1
+1 +1 −1 −1
−1 −1 +1 +1
−1 −1 +1 +1


 [x, y] (16)

Wavelet Sum [23]: The sum of the absolute value of the
high-frequency components of level ` of the wavelet de-
composition of the image. In our experiments, we use
CDF9/7 wavelets [4].

φ =
∑
x,y

∣∣∣W (`)
LH [x, y]

∣∣∣+
∣∣∣W (`)

HL[x, y]
∣∣∣+
∣∣∣W (`)

HH [x, y]
∣∣∣(

W
(`)
LL,W

(`)
LH ,W

(`)
HL,W

(`)
HH

)
= CDF9/7(I, `) (17)

Wavelet Variance [23]: The variance of the high-
frequency components of level ` of the wavelet decompo-
sition of the image.

φ = Var
(
W

(`)
LH [x, y]

)
+ Var

(
W

(`)
HL[x, y]

)
+ Var

(
W

(`)
HH [x, y]

)
(18)

Wavelet Ratio [22]: The ratio of the squared norm of the
high-frequency components of level ` of the wavelet de-
composition of the image to the squared norm of the low-
frequency components.

φ =

∑
x,yW

(`)
LH [x, y]2 +W

(`)
HL[x, y]2 +W

(`)
HH [x, y]2∑

x,yW
(`)
LL[x, y]2

(19)

Mean Wavelet Log-Ratio : This is a baseline of our own
design in which we modify the “Wavelet Ratio” model to
compute a local log-ratio between the high-frequency and
low-frequency energy at each spatial location in one level
of a wavelet decomposition, and then compute the mean of
those log-ratios. We add 1 to the denominator to prevent
numerical issues.

φ =
1

n

∑
x,y

log

(
W

(`)
LH [x, y]2 +W

(`)
HL[x, y]2 +W

(`)
HH [x, y]2

W
(`)
LL[x, y]2 + 1

)
(20)

Eigenvalue Trace [21]: The image is reduced to a matrix
where each column is a vector containing the intensity val-
ues of each non-overlapping patch (here, of size 4 × 4) in
the image. The trace of the sample covariance of that matrix
is then used as a measure of sharpness.

φ = trace(cov(im2col(I, 4))) (21)



Mean Local Ratio [7]: A local measure of contrast is
computed at each pixel by considering the ratio of each
pixel intensity to a local average, and the overall contrast
is computed as the average of those ratios (rectified if they
are below 1) across the image. The numerator and denomi-
nator of each ratio are incremented by 1 to avoid numerical
issues.

φ =
1

n

∑
x,y

max

(
blur(I, σ)[x, y] + 1

I[x, y] + 1
,

I[x, y] + 1

blur(I, σ)[x, y] + 1

)
(22)

Where blur(I, σ) applies a Gaussian blur of standard devi-
ation σ to image I .

Mean Local Log-Ratio: This is a baseline of our own de-
sign in which we modify the “Mean Local Ratio” technique
above, by using the geometric mean of ratios instead of the
arithmetic mean.

φ = exp

(
1

n

∑
x,y

∣∣∣∣log

(
I[x, y] + 1

blur(I, σ)[x, y] + 1

)∣∣∣∣
)

(23)

Mean Local Norm-Dist-Sq: This is another baseline of
our own design, in which we modify the “Mean Local Ra-
tio” technique to use normalized squared distance (similar
to a Coefficient of Variation) instead of ratios, which im-
proves performance.

φ =
1

n

∑
x,y

(I[x, y]− blur(I, σ)[x, y])2

blur(I, σ)[x, y]2 + 1
(24)

1.2. Dual-Pixel / Stereo Baseline Algorithms

Because our images are taken from a dual pixel (DP)
sensor, our focal stack can be thought of as a stack of left
and right images in a stereo pair {(L,R)}. When a patch
is in focus, the left and right DP images should resemble
each other. It is therefore possible to construct simple auto-
focus algorithms by taking each left/right image pair (L,R)
in a DP focal stack, compute some measure of mismatch
between those two images f , and return the focal index that
minimizes that loss. In this section, we describe the base-
line algorithms we use for this approach. Because patches
of the the left and right DP images may have drastically dif-
ferent global brightnesses due to lens shading (especially
when the patches are taken from the periphery of the entire
image frame), these stereo-like algorithms must be invari-
ant to global transformations of the input images. For this
reason, we center each image by its mean and divide by its
standard deviation before computing all stereo measures:

L̂ =
L− µ(L)

Var(L)
, R̂ =

R− µ(R)

Var(R)
(25)

This has no effect on some models (such as census and rank
transformations) but is critical for other models.

Census Transform (Hamming) [24]: We apply the cen-
sus transformation to the left and right DP images, wherein
each pixel is represented by an 8-length binary vector repre-
senting whether or not the pixel is greater than each of its 8
neighbors. We score each pair according to the total Ham-
ming distance between the two census-transformed images.

f =
∑
x,y

‖census(L)[x, y]− census(R)[x, y]‖0

census(I)[x, y] =

[
I[x+ ∆x, y + ∆y] > I[x, y]

∣∣∆x ∈ [−1, 0, 1],∆y ∈ [−1, 0, 1],∆x 6= ∆y 6= 0

]
(26)

Rank Transform (L1) [24]: We apply the rank transfor-
mation (the 0-norm of the census transformation) to the left
and right DP images, and score each pair according to the
L1 distance between the two rank-transformed images.

f =
∑
x,y

‖rank(L)[x, y]− rank(R)[x, y]‖1 (27)

rank(I)[x, y] = ‖census(I)[x, y]‖0 (28)

Ternary Census [16]: We apply the ternary census trans-
formation to the left and right DP images, wherein each
pixel is represented by an 8-length ternary vector represent-
ing if the pixel is greater than, less than, or close to (accord-
ing to some threshold ε) each of its 8 neighbors. We then
score each pair according to the total L1 distance between
the two census-transformed images.

f =
∑
x,y

∥∥census3(L)[x, y]− census3(R)[x, y]
∥∥
1

census3(I)[x, y] =

[
tsgn (I[x+ ∆x, y + ∆y]− I[x, y])

∣∣∆x ∈ [−1, 0, 1],∆y ∈ [−1, 0, 1],∆x 6= ∆y 6= 0

]
tsng(x, ε) = sgn(x) [|x| > ε] (29)

Normalized Cross-Correlation [1, 6]: NCC is just the
inner product of these two normalized images, with its sign
flipped such that minimization results in maximum cross-
correlation. This is equivalent to minimizing the normalized
sum of squared distances between the two images.

f = −
〈
L̂, R̂

〉
(30)

Normalized SAD [6]: The sum of absolute deviations be-
tween the two normalized images.

f =
∑
x,y

∣∣∣L̂[x, y]− R̂[x, y]
∣∣∣ (31)



Normalized Envelope (L1) [2]: Pixel matching tech-
niques can be made invariant to the discrete sampling of
the sensor by adapting them to operate on smooth upper
and lower envelopes of image intensities. Here we compute
an upper and lower envelope of the left and right images,
and from them compute the total L1 distance between the
extents of the left and right envelopes.

f =
∑
x,y

∣∣∣max
(

0, L̂lo[x, y]− R̂hi[x, y]
)∣∣∣ (32)

+
∣∣∣max

(
0, R̂lo[x, y]− L̂hi[x, y]

)∣∣∣
L̂lo = min2

(
blur2

(
L̂
))

, Lhi = max2
(

blur2
(
L̂
))

where max2(·) is a 2 × 2 “max” filter (i.e. max pooling),
min2(·) is a 2 × 2 “min” filter (i.e. min pooling), and
blur2(·) is a 2 × 2 box filter (i.e. average pooling). Rlo

and R̂hi are defined similarly.

Normalized Envelope (L2) [2]: Similarly, we can com-
pute the total squared distance between the extents of the
left and right envelopes.

f =
∑
x,y max

(
0, L̂lo[x, y]− R̂hi[x, y]

)2
+ max

(
0, R̂lo[x, y]− L̂hi[x, y]

)2
(33)

1.3. Single-Slice Baseline Algorithms

The baseline methods above infer the in-focus index by
either maximizing contrast φ (for contrast-based methods)
or minimizing stereo mismatch f (for dual-pixel methods).
Hence, they all require the knowledge of the entire focal
stack before making a prediction.

However, the DP algorithms can be extended to predict
the in-focus index with just one input DP image pair, if we
can establish the relationship between left/right disparity d
and ideal focus distance z∗. We list a few such algorithms
below.

SSD Disparity: We use the block matching approach of
[20] to estimate disparity. In order to convert the disparity
of a patch to a focal depth, we fit a linear model that es-
timates focal depth from the median patch disparity. The
linear model is robustly estimated from all training patches
using RANSAC. This methods computes depth over 1.5×
reduced field of view and we report results only on patches
contained within that field of view. A narrower field of
view is not unfair to the baseline as PSF variations and focal
breathing are worse near the periphery.

Learned Depth: We use the neural network based ap-
proach of [5] to predict depth from dual-pixel images. The

model from [5] predicts depth maps up to an unknown affine
transform, which we estimate by solving a least squares
problem that minimizes the L2 distance between the affine
transformed depth map and the disparity from [20] that are
known to be linearly related. We use the same fitting de-
scribed in SSD Disparity and restrict evaluation to the same
1.5× reduced field of view.

ZNCC Disparity with Calibration: We compute the
zero-normalized cross correlation between the input DP im-
age pair (L,R) (using Equation 25) to get (L̂, R̂). Then, we
compute disparity between L̂ and R̂ [1, 6] and apply a pre-
computed calibration to convert disparity to focal distance.
Specifically, to compute disparity d, we do the following

d = argmax
δ

〈
L̂[x, y], R̂[x+ δ, y]

〉
(34)

for integer δ in a small range around zero. We then refine
d to get sub-pixel resolution by fitting a quadratic near the
peak and finding its supremum.

Under paraxial and thin-lens approximations, and as-
suming constant aperture and focal length, signed disparity
d and ideal focus distance z∗ are related by an affine trans-
form [20]:

d = C

(
1

z
− 1

z∗

)
(35)

where C is a calibration constant and z is the lens’s current
focus distance.

The assumption that C is a constant breaks down for
real lenses as they do not satisfy the paraxial and thin-
lens approximations. In fact, the value of C varies signif-
icantly across the field of view, due to optical aberration,
vignetting, changes in optical blur kernels, etc., as shown
in [20]. The camera device we use embeds a factory cali-
bration table that specifies the measured C values sparsely
across the field of view. We obtain the value of C for each
input patch by bilinearly interpolating the low-resolution
calibration table.

With the knowledge of disparity d, calibration coefficient
C, and current focus distance z, we can easily solve for z∗

in Equation 35.

2. Generalization to other phones

To show that our technique generalizes, we use the data
captured in the paper to create a new test set using the “left”
camera, which has a different calibration and PSF.

This left test set contains the same scenes as the test set
in the original paper; however, the overall attributes of the
set may be different. The “left” phone is positioned in front
of the “center” phone by 1.1 cm (on the z-axis, it is +1.1cm
closer to objects in the scene). In addition, the computed



higher is better lower is better
Algorithm = 0 ≤ 1 ≤ 2 ≤ 4 MAE RMSE

D1 Learned Depth† [5] 0.070 0.206 0.340 0.564 7.224 11.010
D1 SSD Disparity† [20] 0.068 0.200 0.333 0.550 7.377 10.951
D1 ZNCC Disparity 0.046 0.136 0.224 0.379 9.436 13.138
D1 Our model 0.105 0.322 0.513 0.807 2.912 3.867

Table 1. Evaluating techniques on the “left” version of the test set.
This tests whether the technique generalizes to other phones. Note
our model still outperforms the baselines and that the performance
went down for all techniques indicating that the “left” version of
the test set is harder. See text for explanation. A † indicates that
patches within a 1.5× reduced field of view were used.

depth has an overall lower confidence than that of the cen-
ter camera since fewer cameras see all the pixels captured
by the left camera. This problem is particularly apparent on
the left side of the capture. In addition, because we keep
the same confidence threshold as used for the center cam-
era, fewer patches will be generated. In general, it may be
difficult to compare the raw numbers from the test set using
the center camera and the test set using the left camera.

As shown in Table 1, all techniques report slightly lower
numbers. This indicates that the “left” test-set may be more
difficult than the “center” test-set due to the aforementioned
changes. Despite this, our model still outperforms the base-
lines. Additionally, several simple techniques, like adding
calibration data to the model or a brief fine-tuning stage for
each camera, could be easily added to our approach and po-
tentially lead to improved per-device performance.

For this run, ZNCC Disparity uses calibration for the
“left” camera, and linear models to convert to focal depths
for SSD Disparity and Learned Depth were estimated using
the training data patches from the “left” camera.

3. Multi-step problem

In Figure 3, we obtain improved results on the multi-step
problem.

4. Light and Dark Scenes

In Figure 8 in the main paper, we presented examples
on particularly dark images. In Table 2, we present the full
numeric breakdowns of the performance of single-index al-
gorithms on scenes with a normal amounts of light versus
scenes with low light.

To capture these, we placed the rig in a fixed position and
then captured two focal stacks: one with the light on and
then one with the light turned off. As a result, these captures
should be perfectly registered and should be the identical
besides the presence or absence of light. We then used the
ground truth depth from the light image to eliminate any
possible mistakes that the SFM pipeline would have with
the darker images.

5. Example Images
5.1. Single slice as input

In Figures 1, 2, 3, 4, we provide a random selection of in-
puts (among those inside the 1.5x crop center, so that the PD
baselines are present) and the predictions from all baselines
and our models. The “Input” is what the algorithm is given.
The focal stack identification key is directly above the row.
The title of each focal slice is: the name of the algorithm,
the index, (“Err” followed by the number of indices away
from the ground truth).

5.2. Focal stack as input

In Figures 5, 6, 7, 8, we provide a random selection of
inputs in the test set. The diagram contains an “Input” cate-
gory; however, this is simply to display another element of
the focal stack. All of these algorithms receive the full focal
stack as input. The focal stack identification key is directly
above the row. The title of each focal slice is: the name of
the algorithm, the index, (“Err” followed by the number of
indices away from the ground truth).
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Figure 3. Algorithms given singleindex. Example page 3
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Figure 5. Algorithms given fullfocal. Example page 1



Figure 6. Algorithms given fullfocal. Example page 2



Figure 7. Algorithms given fullfocal. Example page 3



Figure 8. Algorithms given fullfocal. Example page 4


