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Figure 1: Performance of ERFNet-IntRA-KD with different
kernel sizes on ApolloScape testing set.

1. Effect of the size of the smoothing kernel

From Fig. 1, we can see that when the kernel size is 1 ×
1, the performance of IntRA-KD is slightly degraded since
the neighbouring areas around road markings are missed in
the distillation process. When the kernel size ranges from 2
to 50, the performance remains almost the same, suggesting
the stability of IntRA-KD . However, when the kernel size
continues to increase, the performance of IntRA-KD drops
quickly since too many background areas are included and
it will make the moment vector of each class inaccurate. In
the experiment, the kernel size is set as 5.

2. Performance of ENet and ResNet-18 us-
ing different distillation methods on three
benchmarks

Tables 1- 3 record the performance of different algo-
rithms using ENet and ResNet-18 as backbones on three
benchmarks.

†: Corresponding author.

3. Comparison between IntRA-KD and previ-
ous distillation methods

We compare the learning complexity and performance
gains of using different forms of knowledge in Table 4. Sup-
pose the input image is X ∈ Rh×w×3, the feature map is
F ∈ Rhf×wf×c and n is the number of classes. Since we
use high-level and middle-level feature maps as distillation
targets, hf is either 1

4h or 1
8h. The number of classes n is

usually smaller than 1
10c and 1

10hf . It is evident that the in-
troduced affinity graph has the least learning complexity but
brings most performance gains over other distillation meth-
ods. The above result apparently showcases the importance
of utilizing the structural knowledge in road marking seg-
mentation.

4. More qualitative results of different algo-
rithms on three benchmarks

In this section, we show more qualitative results of our
IntRA-KD and BiFPN [14] (the most competitive base-
line) on three benchmarks. As shown in (a) and (c) of
Fig. 2, ERFNet-IntRA-KD makes more accurate predic-
tions on long and thin road markings. As for other chal-
lenging scenarios (e.g., crowded roads and poor light con-
ditions), predictions made by ERFNet and ERFNet-BiFPN
are inaccurate and messy. By contrast, the predictions
of ERFNet-IntRA-KD are more complete and accurate in
these challenging conditions. The experimental results
strongly showcase the effectiveness of IntRA-KD .

5. Visualization of the affinity graph of differ-
ent algorithms

From Fig. 3, we can see that IntRA-KD not only im-
proves the predictions of ERFNet, but also makes the gen-
erated affinity graph more rational compared with BiFPN.
More specifically, with IntRA-KD , those spatially close
and visually similar road markings are pulled closer and
those spatially distant and visually different markings are
pulled apart in the feature space. The provided samples
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Table 1: Performance of ENet and ResNet-18 using different distillation methods on ApolloScape testing set.

(a) ENet

Type Algorithm mIoU

Teacher ResNet-101 [3] 46.6
Student ENet [10] 39.8

Self distillation
ENet-DKS [11] 40.1
ENet-SAD [5] 40.3

Teacher-student
distillation

ENet-KD [4] 40.1
ENet-SKD [8] 40.2

ENet-PS-N [12] 40.0
ENet-IRG [7] 40.4

ENet-BiFPN [14] 40.6
ENet-IntRA-KD (ours) 41.6

(b) ResNet-18

Type Algorithm mIoU

Teacher ResNet-101 [3] 46.6
Student ResNet-18 [3] 40.0

Self distillation
ResNet-18-DKS [11] 40.3
ResNet-18-SAD [5] 40.5

Teacher-student
distillation

ResNet-18-KD [4] 40.2
ResNet-18-SKD [8] 40.4

ResNet-18-PS-N [12] 40.1
ResNet-18-IRG [7] 40.5

ResNet-18-BiFPN [14] 41.1
ResNet-18-IntRA-KD (ours) 42.4

Table 2: Performance of ENet and ResNet-18 using different distillation methods on CULane testing set.

(a) ENet

Type Algorithm F1-measure

Teacher ResNet-101 [5] 72.8
Student ENet [10] 69.8

Self distillation
ENet-DKS [11] 70.3
ENet-SAD [5] 70.8

Teacher-student
distillation

ENet-KD [4] 70.0
ENet-SKD [8] 70.2

ENet-PS-N [12] 70.1
ENet-IRG [7] 70.4

ENet-BiFPN [14] 71.0
ENet-IntRA-KD (ours) 71.8

(b) ResNet-18

Type Algorithm F1-measure

Teacher ResNet-101 [5] 72.8
Student ResNet-18 [3] 69.4

Self distillation
ResNet-18-DKS [11] 69.8
ResNet-18-SAD [5] 70.5

Teacher-student
distillation

ResNet-18-KD [4] 69.7
ResNet-18-SKD [8] 70.0

ResNet-18-PS-N [12] 69.8
ResNet-18-IRG [7] 70.2

ResNet-18-BiFPN [14] 70.8
ResNet-18-IntRA-KD (ours) 71.4

Table 3: Performance of ENet and ResNet-18 using different distillation methods on LLAMAS testing set.

(a) ENet

Type Algorithm mAP

Teacher ResNet-101 [3] 0.607
Student ENet [10] 0.562

Self distillation
ENet-DKS [11] 0.564
ENet-SAD [5] 0.566

Teacher-student
distillation

ENet-KD [4] 0.564
ENet-SKD [8] 0.567

ENet-PS-N [12] 0.566
ENet-IRG [7] 0.567

ENet-BiFPN [14] 0.572
ENet-IntRA-KD (ours) 0.585

(b) ResNet-18

Type Algorithm mAP

Teacher ResNet-101 [3] 0.607
Student ResNet-18 [3] 0.565

Self distillation
ResNet-18-DKS [11] 0.568
ResNet-18-SAD [5] 0.569

Teacher-student
distillation

ResNet-18-KD [4] 0.566
ResNet-18-SKD [8] 0.570

ResNet-18-PS-N [12] 0.569
ResNet-18-IRG [7] 0.571

ResNet-18-BiFPN [14] 0.576
ResNet-18-IntRA-KD (ours) 0.590

strongly indicate the effectiveness of IntRA-KD in trans-
ferring the structural knowledge from the teacher model to
the student model.

6. Performance of ERFNet and SwiftNetRN-18
on four benchmarks

We test IntRA-KD on Cityscapes [2] using
DeepLabv3+ [1] as teacher and ERFNet and SwiftNetRN-
18 [9] as students. IntRA-KD consistently improves the
mIoU of ERFNet and SwiftNetRN-18 from {69.8, 75.5}
to {71.4, 76.6}, respectively. Besides, we have also ap-



Table 4: Comparison between learning complexity and per-
formance gains on mIoU when using different forms of
knowledge. The performance gains are calculated on Apol-
loScape testing set using ERFNet as student and ResNet-
101 as teacher.

Knowledge form Complexity Gains

Probability map [4] O(hwn) 0.3
Feature map [6] O(hfwfc) 0.4

Pairwise similarity map [8] O(h2
fw

2
f ) 0.3

Attention map [13] O(hfwf ) 0.7
Inter-region affinity graph (ours) O(n2) 1.9

ERFNet-IntRA-KDinput
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ERFNet-BiFPNERFNet

39.4 % 40.3 % 41.5 %

75 % 75 % 100 %

33.3 % 66.7 % 100 %

(c) 30.3 % 31.1 % 32.0 %

Figure 2: Qualitative results of different algorithms on (a)
ApolloScape, (b) CULane and (c) LLAMAS testing sets.
The number below each image denotes the accuracy for (a)
and (c), F1-measure for (b). Ground-truth labels are drawn
on the input image. The second row of (a) and (c) are the
enlarged areas covered by the red dashed rectangle.

plied IntRA-KD to SwiftNetRN-18 on all benchmarks by
taking ResNet-101 as teacher. From Table. 5, it is evident
that IntRA-KD brings significant performance gains to
SwiftNetRN-18 in all benchmarks. The promising results
validate the effectiveness and generality of the proposed
IntRA-KD .
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