What You See is What You Get: Exploiting Visibility for 3D Object Detection

Supplementary Materials

Peiyun Hu', Jason Ziglar?, David Held!, Deva Ramanan'-

1 Robotics Institute, Carnegie Mellon University
2 Argo Al

peiyunh@cs.cmu.edu, jziglar@argo.ai, dheld@andrew.cmu.edu, deva@cs.cmu.edu

A. Additional Results

More qualitative examples: Please find a result video at https://youtu.be/8bXkDxSgMsM. We provide a visual
guide on how to interpret the visualization in Fig A.

construction

car pedestrian barrier traffic cone truck bus trailer vehicle

motorcycle bicycle

A false alarm for pedestrians

s
Misclassifies a truck as a car @

=)

il

iy
Figure A: We use an example frame (same as Fig. 6-(a)) from the video to illustrate how we visualize. Solid transparent

cuboids represent ground truth. Wireframe boxes represent predictions. Colors encode object classes (top). Inside this frame,
our algorithm successfully detects most cars, trucks, and trailers. We also highlight all the mistakes made by our algorithm.

Performance over multiple runs: We re-train the same model for 5 more times, each time with a different random
seed. The seed affects both network initialization and the order in which training data is sampled. We evaluate the detection
accuracy of each run on nuScenes validation set and report the mean and standard deviation. As Table | shows, the standard
deviations are much smaller than the reported improvements, suggesting the performance gain is not due to a lucky run.


https://youtu.be/8bXkDxSgMsM

Table 1: 3D detection mAP over multiple runs on NuScenes validation set.
T: reproduced based on an author-recommended third-party implementation.

car pedes. barri. traff. truck bus trail. const. motor. bicyc. mAP

PointPillars 76.9 62.6 29.2 204 32.6 49.6 279 3.8 11.7 0.0 315
Ours 80.0 66.9 34.5 27.9 35.8 54.1 28.5 7.5 18.5 0.0 354
Ours (runl) 80.2 67.3 345 27.0 36.1 54.6 28.9 6.4 17.5 0.3 353
Ours (run2) 80.5 67.1 352 27.0 36.1 52.9 30.5 6.9 16.2 0.0 35.2
Ours (run3) 80.7 66.9 354 24.9 35.0 54.0 31.7 6.8 16.6 0.1 352
Ours (run4) 80.8 67.2 345 279 35.8 52.9 29.6 8.2 14.8 0.0 352
Ours (run5) 80.4 67.7 35.6 26.8 36.7 523 31.1 7.9 17.8 0.0 35.6

Mean £ Std 804 +03 672+03 350£05 269+11 359+06 535+09 301+13 73+£07 169+13 01+£01 353£02

B. Additional Experimental Details

Here, we provide additional details about our method, including pre-processing, network structure, initialization, loss
function, training etc. These details apply to both the baseline method (PointPillars) and our two-stream approach.

Pre-processing: We focus on points whose (x,y, z) satisfies € [—50, 50],y € [—50,50], z € [—5, 3] and ignore points
outside the range when computing pillar features. We group points into vertical columns of size 0.25 x 0.25 x 8. We call
each vertical column a pillar. We resample to make sure each non-empty pillar contains 60 points. For raycasting, we do not
ignore points outside the range and use a voxel size of 0.25 x 0.25 x 0.25.

Network structure: We introduce (1) pillar feature network; (2) backbone network; (3) detection heads.

ey

@

3)

Pillar feature network operates over each non-empty pillar. It takes points (z,y, 2, t) within the pillar and produces a
64-d feature vector. To do so, it first compresses (z,y) to (r), where r = /22 4+ y2. Then it augments each point
with its offset to the pillar’s arithmetic mean (z., Y., 2.) and geometric mean (zp,y,). Please refer to Sec. 2.1 of
PointPillars [2] for more details. Then, it processes augmented points (r, 2,t, & — Ze, ¥ — Ye, 2 — Ze, T — Tp, Y — Yp)
with a 64-d linear layer, followed by BatchNorm, ReLLU, and MaxPool, which results in a 64-d embedding for each
non-empty pillar. Conceptually, this is equivalent to a mini one-layer PointNet. Finally, we fill empty pillars with all
zeros. Based on how we discretize, pillar feature network produces a 400 x 400 x 64 feature map.

Backbone network is a convolutional network with an encoder-decoder structure. This is also sometimes referred to as
Region Proposal Network. Please read VoxelNet [6], SECOND [5], and PointPillars [2] for more details. The network
consists three blocks of fully convolutional layers. Each block consists of a convolutional stage and a deconvolutional
stage. The first (de)convolution filter of the (de)convolutional stage changes the spatial resolution and the feature
dimension. All (de)convolution is 3x3 and followed with BatchNorm and ReLU. For our two-stream early-fusion
model, the backbone network takes an input of size 400 x 400 x 96, where 64 channels are from pillar feature and 32
channels are from visibility. The first block contains 4 convolutional layers and 4 deconvolutional layers. The second
and the third block each consists of 6 both of these layers. Within the first block, the feature dimension changes from
400 x 400 x 96 to 200 x 200 x 96 during the convolutional stage, and 200 x 200 x 96 to 100 x 100 x 192 during
the deconvolutional stage. Within the second block, the feature dimension from 200 x 200 x 96 to 100 x 100 x 192.
Within the third block, the feature map changes from 100 x 100 x 192 to 50 x 50 x 384 and back to 100 x 100 x 192.
At last, features from all three blocks are concatenated as the final output, which has a size of 100 x 100 x 576.

Detection heads include one for large object classes (i.e. car, truck, trailer, bus, and construction vehicles) and one
for small object classes (i.e. pedestrian, barrier, traffic cone, motorcycle, and bicycle). The large head takes the
concatenated feature map from backbone network as input (100 x 100 x 576) while the small head takes the feature
from the backbone’s first convolutional stage as input (200 x 200 x 96). Each head contains a linear predictor for anchor
box classification and a linear prediction for bounding box regression. The classification predictor outputs a confidence
score for each anchor box and the regression predictor outputs adjustment coefficients (i.e. x,y, z, w, [, h, ).

Loss function: For classification, we adopt focal loss [3] and set « = 0.25 and v = 2.0. For regression output, we use
smooth L1 loss (a.k.a. Huber loss) and set o = 3.0, where o controls where the transition between L1 and L2 happens. The
final loss function is the classification loss multiplied by 2 plus the regression loss.

Training: We train all of our models for 20 epochs and optimize using Adam [1] as the optimizer. We follow a learning
rate schedule known as “one-cycle” [4]. The schedule consists of 2 phases. The first phase includes the first 40% training



steps, during which we increase the learning rate from 0'%’3 to 0.003 while decreasing the momentum from 0.95 to 0.85

following cosine annealing. The second phase includes the rest 60% training steps, during which we decrease the learning
rate from 0.003 to f(')%%% while increasing the momentum from 0.85 to 0.95. We use a fixed weight decay of 0.01.

References

[1] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. 2

[2] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders for object
detection from point clouds. In CVPR, 2019. 2

[3] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Focal loss for dense object detection. In CVPR, pages
2980-2988, 2017. 2

[4] Leslie N Smith. Cyclical learning rates for training neural networks. In WACYV, pages 464-472. IEEE, 2017. 2

[5] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embedded convolutional detection. Sensors, 18(10):3337, 2018. 2

[6] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud based 3d object detection. In CVPR, pages 4490-4499,
2018. 2



