
Improving Action Segmentation via Graph Based Temporal Reasoning
Supplementary Material

Yifei Huang, Yusuke Sugano, Yoichi Sato
Institute of Industrial Science, The University of Tokyo

{hyf,sugano,ysato}@iis.u-tokyo.ac.jp

In this supplementary material, we first report some addi-
tional experiments to examine different variants of our pro-
posed GTRM. Then we show more qualitative results on
the 50Salads dataset and the Breakfast dataset. Finally we
explain more details of the training process of our model.

1. Additional Experiments
1.1. Comparison with 1D convolution

In our GTRM, we use GCN as a way to perform rea-
soning on the graph structure. An alternative approach to
perform reasoning on the temporal relation of segments is
to perform 1D convolution on the sequence of segments.
While it can increase the computational cost and potentially
aggregate irrelevant information (from, e.g., background
segments containing no action), 1D convolution can still
gather information from the neighbourhood nodes for up-
dating the hidden representation of each node.

EGTEA F1@{10,25,50} Edit Acc

m-GRU 32.6 27.7 17.6 36.0 67.1
C-conv + R-conv 41.5 35.9 24.2 40.7 68.2
C-conv + R-GCN 41.4 35.7 23.2 41.2 68.2
C-GCN + R-conv 41.7 36.3 24.2 42.4 67.9
C-GCN + R-GCN 41.6 37.5 25.9 41.8 69.5

Table 1. Changing GCN operation to 1D convolution.

In this experiments, we replace either of R-CGN and C-
GCN with 1D convolution and compare the performances
on the EGTEA dataset. Results are shown in Table 1. C-
conv + R-conv corresponds to the model where both C-
GCN and R-GCN are replaced with 1D convolution. C-
conv + R-GCN and C-GCN + R-conv denote the cases
where either the C-GCN or R-GCN is replaced with 1D
convolution, respectively. C-GCN + R-GCN corresponds
to our originally reported result.

Despite the fact that 1D convolution increases the com-
putational complexity especially with larger kernel sizes,
the overall performance change remains small. This illus-

trates the benefit of using GCN rather than 1D convolution
on nodes for reasoning the temporal relations of the action
segments.

1.2. Comparison with other alternatives tools for
modeling relation

Similarly with the previous section, the GCNs in our
GTRM could be also changed to other alternatives (e.g.
LSTM). In this section we discuss the effect on result and
computational cost when GCNs are replaced by other alter-
natives. These include bi-LSTM [2], dilated convolution
(dil.-conv) [1] and 1D-convolution (1D-conv) introduced
above. We also compare the number of parameters, number
of added parameters, and the FLOPs added for each alter-
native.

variants F1@{10,25,50} Params ∆ Params ∆ FLOPs
None 32.6 27.7 17.6 1.53M 0 0
bi-LSTM [2] 33.7 28.5 17.9 2.38M 0.85M 23%
dil.-conv [1] 39.8 34.0 22.6 2.50M 0.97M 20%
1D-conv 41.5 35.9 24.2 3.79M 2.26M 47%
GTRM 41.6 37.5 25.9 1.85M 0.32M 8%

Table 2. Number (and added number) of parameters, added FLOPs
of different variants of GTRM on the EGTEA dataset.

Table 2 shows the number of parameters and its increase
from the baseline (None), together with the increase in
FLOPs. Overall, GCN not only achieves the best perfor-
mance but is also significantly faster and requires much
fewer parameters than other methods such as 1D convo-
lution and recurrent network. As shown in the table, our
GTRM uses much fewer parameters and is significantly
faster than the best baseline (1D-conv). All the other base-
lines mentioned in the previous paragraph also take up
much more (∼ 3× more) computational time than our pro-
posed model (except FCN).

1.3. Influence of edge weighting

In this section we discuss the influence of different edge
weight designs in R-GCN and C-GCN. While in our GTRM
edges are weighted according to the temporal distances, it



is also possible to use uniform weights on each edge which
still enables message passing between connected nodes.

We replace the edge weight of either C-GCN or R-GCN
to uniform weighting and compare the performance on the
EGTEA dataset. Experimental results are summarized in
Table 3. C-Uni+R-Uni is the case where both GCNs use
uniform weight. C-Uni+R-GCN and C-GCN+R-Uni indi-
cates the cases where only edges in C-GCN or R-GCN is
changed to uniform weight, respectively. C-GCN+R-GCN
is our reported result.

Gain F1@{10,25,50} Edit Acc

m-GRU 32.6 27.7 17.6 36.0 67.1
C-Uni + R-Uni 39.6 34.2 23.2 41.3 67.4
C-Uni + R-GCN 40.9 35.9 24.8 41.4 67.4
C-GCN + R-Uni 40.6 35.8 24.1 41.2 67.4
C-GCN + R-GCN 41.6 37.5 25.9 41.8 69.5

Table 3. Changing edge weight to uniform weight.

We can see that, even with the uniform edge weights, the
performance is far better than the baseline m-GRU. This
demonstrates the importance of modeling temporal rela-
tions among action segments for a better action segmen-
tation. The performance is further improved with our pro-
posed edge weighting scheme, and supports the effective-
ness of the distance-based weight design.

2. Qualitative results
In this section, we show more qualitative results on the

Breakfast dataset (Fig 1) and the 50Salads dataset (Fig 2).
In both figures, we show the ground truth segmentation re-
sults in the first row (a), results of MS-TCN in the sec-
ond row (b), and the result of MS-TCN with our proposed
GTRM on top in the third row (c). We can see that in these
two datasets, while adding our proposed GTRM on top of
MS-TCN improve the overall result, the influence is rela-
tively small.

3. Training Details
For training the model, we use the Adam optimizer with

its default settings. We summarize the training of our model
in 3 stages. In the first stage, we first train the back-
bone model for 50 epochs to get a reasonable result for
the proposed GTRM. During this stage, the loss only in-
cludes Lseg(ygt

i ,yi). Then in the second stage, we then
fix the backbone and train the GTRM for 50 epochs. Dur-
ing this stage, we alternatively feed the ground truth ac-
tion segments Y gt and the output from the backbone Y
as input to our GTRM. The loss function is the joint loss
function of Equation 8 in the submission without the first
item Lseg(ygt

i ,yi). The learning rate in the first two stages
are both 5× 10−4. In the final stage, we jointly train

the whole model under the joint loss function, with a re-
duced learning rate of 1× 10−4 In all experiments, we set
λt = 0.15, λ1 = λ2 = 0.5 for loss functions.

References
[1] Yazan Abu Farha and Jurgen Gall. Ms-tcn: Multi-stage tem-

poral convolutional network for action segmentation. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2019. 1

[2] Bharat Singh, Tim K Marks, Michael Jones, Oncel Tuzel, and
Ming Shao. A multi-stream bi-directional recurrent neural
network for fine-grained action detection. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2016. 1

2



Background Add teabag Pourwater Background

Background

Background

Background

Background

Add teabag

Add teabag

Pourwater

PourwaterTakecup

Takecup (a)

(b)

(c)

(a)

(b)

(c)

Fry pancake

Fry pancake

Fry pancake

Spoon
flour
Spoon
flour
Spoon
flour

Crack
egg

Crack
egg

Pour
milk

Butter
panStir dough

Stir dough

Stir dough Pourdough
to pan

Figure 1. Qualitative results on the Breakfast dataset. Result is shown in full video length. Corresponding results are: (a) Ground truth, (b)
MS-TCN, (c) MS-TCN + GTRM.

(a)

(b)

(c)

(a)

(b)

(c)

Figure 2. Qualitative results on the 50Salads dataset. Result is shown in full video length. Corresponding results are: (a) Ground truth, (b)
MS-TCN, (c) MS-TCN + GTRM.

3


