
Appendix

In this appendix, Section A gives a description of the
semi-supervised DDGAN for unpaired data. Section B and
Section C provide more details about optimization and net-
work architectures. Section D provides extra experimental
results and analysis of the loss functions we used.

A. Semi-supervised DDGAN

Although the unsupervised DDGAN is more general, the
semi-supervised DDGAN can take advantage of the super-
vised information of unpaired data for degradation invari-
ance learning. For this case, the training set requires a
domain-wise partition, e.g., a day/night division, and the
degradation score predicted by the degradation discrimina-
tor should be 0-1 discrete distribution, where 0 indicates no
degradation, while 1 indicates degradation.

Since the unsupervised degradation ranking loss is in-
appropriate for such a discrete distribution, we rewrite the
degradation adversarial loss as:
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for self-degradation generation and cross-degradation gen-
eration, respectively. Note that xi is sampled from normal
image domain, while xk is sampled from degraded image
domain, both of which are real-world samples.

The rest of the loss functions are consistent with that of
the unsupervised DDGAN.

Figure 8. The multi-scale structure of the content encoder Ec.

Table 4. Architecture of the degradation encoder Ed.

Layer Parameters Output Size

Input - 3 × 256 × 128

Conv1 [3×3, 64] 64 × 128 × 64
Conv2 [3×3, 64] 64 × 128 × 64

Conv3 [3×3, 128] 128 × 64 × 32
Conv4 [3×3, 256] 256 × 32 × 16
Conv5 [3×3, 256] 256 × 16 × 8
Conv6 [3×3, 256] 256 × 8 × 4

AvgPool - 256 × 1 × 1
Conv7 [1×1, 128] 128 × 1 × 1

Table 5. Ablation Study of loss functions on the MLR-
CUHK03 dataset.

Methods Rank-1 Rank-5 Rank-10

Ours w/o Lpre 85.4 96.5 98.1
Ours w/o Lid 84.1 96.3 97.3
Ours w/o Linvc 84.5 96.3 98.0
Ours w/o Lrecon 86.0 96.3 97.8
Ours w/o Lreal 85.2 96.0 98.1
Ours w/o Ldeg 85.1 96.0 98.0

Ours 85.7 97.1 98.6

B. Optimization Details
During the stage of degradation invariance learning, an

Adam optimizer with learning rate of 0.0001, weight de-
cay of 0.0005 and (β1, β2) = (0, 0.999) is adopted for the
DDGAN except the auxiliary identity classifier, which is
optimized by a SGD optimizer with learning rate of 0.01,
weight decay of 0.0001 and Nesterov momentum of 0.9.
The same SGD is also applied to optimize the whole DFEN
during the stage of identity representation learning. We also
utilize a multi-step learning rate scheduler with a learning
rate decay of 0.1 and step size of 30000 for smooth conver-
gence.

For the degradation invariance learning stage, the D-
DGAN is optimized by 50,000 iterations with a batch size of
8. The parameters λinvc, λrecon, λreal, λdeg, λid, λpre are
set to 10, 2, 1, 1, 0.5, 0.5, respectively. Adam optimizer
with a learning rate of 0.0001 is adopted.

For the identity representation learning stage, the DFEN
is optimized by 50,000 iterations (10,000 iterations for two
small datasets MLR-VIPER and CAVIAR) and the batch
size is 32. The parameters λinv, λsen, λboth are set to 0.5,
0.5 and 1, respectively. The SGD algorithm with the weight
decay of 0.0001 and the Nesterov momentum of 0.9 is used
for the whole DFEN.



In the inference stage, both finv and fsen are concatenat-
ed into a 1024-dim vector as the final identity representation
for testing.

C. Architecture Details
Proposed approach is able to extract disentangled repre-

sentations with a content encoder Ec and a degradation en-
coder Ed. As shown in Figure 8, a multi-scale ResNet50
structure is imployed for Ec. We note that both content
features fc and identity features finv are produced by the
ResNet50 backbone, which promotes the content encoder
Ec to take into account both degradation invariance and
identity discriminability. In addition, the architecture of
degradation encoder Ed is given in Table 4. Although the
self-degradation encoder E′

d does not share weights with
Ed, they have a completely identical structure.

For the degradation-guided attention module, we adopt a
four-layer perceptron structure with the activation function
of ReLU. The final attentive weights of fsen are produced
by a softmax layer for normalization.

D. Analysis of Loss Functions
In order to analyze the influence of each loss term, we

study the contributions of loss functions in Table 5 and pro-
vide additional generation results, which are produced by
our DDGAN with different loss weights, i.e., λpre, λid,
λinvc, λrecon, λreal and λdeg .

As shown in Figure 9, each loss item has a distinct con-
tribution to the generation results. In particular, Lpre and
Lid suppress the occurrence of artifacts by introducing i-
dentity constraints. Lreal also suppresses the artifacts that
may appear, improving the reality of generated images. As
a self-reconstruction regularization constraint, Lrecon has
the most significant impact on the quality of image gen-
eration. Linvc provides degradation invariance constraints
at the feature level, while Ldeg is performed at the image

Figure 9. The contribution of each loss term for cross-degradation
generation.

Figure 10. The influence of the hyperparameter λdeg (vary from
0.0 to 3.0).

level, which plays an important role on degradation disen-
tanglement learning. Note that the degradation components
almost cannot be captured without Ldeg , which makes the
generated images very similar to the corresponding content
images (e.g., 1th and 8th columns in Figure 9).

For further analysis of the degradation loss Ldeg , we set
λdeg to different values and re-train the model. As illus-
trated in Figure 10, We observe that a larger λdeg leads to
over-disentanglement, while a smaller λdeg might result in
under-disentanglement.


