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In this supplementary material, we provide further de-
tails on the learning rate schedules, data augmentation, and
the hyper-parameter settings. Afterwards, we provide a
more comprehensive study of the decoder design, qualita-
tive examples for the loss ablation study, and a qualitative
comparison with the state-of-the-art Mono-SF approach [3].

A. Learning Rate Schedule
Fig. 6 illustrates the learning rate schedules for both self-

supervised learning and semi-supervised fine-tuning. When
first training our model in a self-supervised manner for 400k
iterations, the initial learning rate starts from 2 × 10−4 and
is halved at 150k, 250k, 300k, and 350k iteration steps.
When fine-tuning in a semi-supervised manner afterwards,
the training schedule consists of 45k iterations; the initial
learning rate starts from 4 × 10−5 and is halved at 10k, 20k,
30k, 35k, and 40k iteration steps.

B. Details on Data Augmentation
As discussed in the main paper, we perform photomet-

ric and geometric augmentations at training time. Here we
provide more details on our augmentation setup for both
self-supervised training and semi-supervised fine-tuning.
Augmentations for self-supervised training. We apply
photometric augmentations with 50% probability. Specif-
ically, we adopt random gamma adjustments, uniformly
sampled from [0.8, 1.2], brightness changes with a multi-
plication factor that is uniformly sampled in [0.5, 2.0], and
random color changes with a multiplication factor that is
uniformly sampled in [0.8, 1.2] for each color channel.

For geometric augmentations, we first randomly crop the
input images with a random scale factor uniformly sampled
in [93%, 100%] and apply random translations uniformly
sampled from [−3.5%, 3.5%] w.r.t. the input image size.
Then we resize the cropped image to 256 × 832 pixels as
in previous work [27, 28, 30, 40, 60]. We also apply a hor-
izontal flip [26, 27, 28, 53] with 50% probability. Because
the geometric augmentations have an effect on the camera
intrinsics, we adjust the intrinsic camera matrix accordingly
by calculating the corresponding camera center and focal
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(a) Learning rate schedule for self-supervised learning.
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(b) Learning rate schedule for fine-tuning.

Figure 6. Learning rate schedules for (a) self-supervised learn-
ing and (b) semi-supervised fine-tuning.

length of each augmented image. At testing time, we only
resize the input image to 256 × 832 pixels without photo-
metric augmentation.

Augmentations for semi-supervised fine-tuning. Like-
wise, we also apply the same photometric augmentations
with 50% probability. For geometric augmentations, we
only apply random cropping without scaling and then re-
size to 256× 832 pixels. Not performing scaling is to avoid
changes to the ground truth, which may happen if zoom-
ing and interpolating the sparse ground truth. The crop size
s · h0 × s · w0 is determined by the cropping factor s that
is uniformly sampled in [94%, 100%], where h0 and w0 is
height and width of the original input resolution. At test-
ing time, the same augmentation scheme as during self-



supervised training applies: resizing the input images to
256× 832 pixels without photometric augmentation. How-
ever, we note that better augmentation protocols can likely
be discovered with further investigation [65].

C. Hyper-Parameter Settings
Our self-supervised proxy loss in Eq. (1) of the main pa-

per has a total of 6 hyper-parameters, which could make it
difficult to achieve satisfactory results without careful tun-
ing. In this section, we thus discuss how we choose the
hyper-parameters and provide an analysis on how sensi-
tive the scene flow accuracy is depending on the hyper-
parameter choices.

First, as discussed in the main paper, the balancing
weight λsf between the two joint tasks in Eq. (1) is dynami-
cally determined to make the loss of the scene flow and dis-
parity be equal in every iteration [21]. For the disparity loss,
we simply adopt the same hyper-parameters (i.e., λd_sm, α,
and β in Eqs. (2), (3b) and (4), respectively) as in previous
work [13], which leaves only two hyper-parameters, λsf_sm
and λsf_pt, to tune in the scene flow loss, Eq. (5). We per-
form grid search on the two parameters.

Table 8 gives the grid search results regarding the two
hyper-parameters, reporting the accuracy for monocular
depth, optical flow, and scene flow. In the upper half of
the table, we fix the smoothness parameter λsf_sm and con-
trol the 3D point reconstruction loss parameter λsf_pt to see
its effect on the accuracy. The bottom half of the table is set
up the other way around. Note that the lower the better for
all metrics.

We find that λsf_pt is important for best scene flow accu-
racy, specifically settings that yield accurate disparity infor-
mation on the target frame, D2-all. This observation fol-
lows our design of the 3D point reconstruction loss, which
penalizes the 3D distance between corresponding points,
encouraging more accurate 3D scene flow in 3D space.
However, as a trade-off, having a higher value of λsf_pt leads
to lower accuracy for 2D estimation, i.e. of depth and op-
tical flow. On the other hand, we find that the parameter
for the 3D smoothness loss, λsf_sm, does not strongly affect
the accuracy in general. That is, once λsf_pt is in the right
range, the results are not particularly sensitive to the param-
eter choice.

D. In-Depth Analysis of the Decoder Design
With the decoder ablation study in Table 3 of the main

paper, we demonstrate that having separate decoders for
disparity and scene flow yields instable, unbalanced out-
puts in contrast to having our proposed single decoder de-
sign. For a more comprehensive analysis, we conduct an
empirical study by gradually splitting the decoder consist-
ing of 5 convolution layers and studying the behavior of the

Depth Flow Scene Flow

λsf_sm λsf_pt Abs Rel EPE D1-all D2-all F1-all SF1-all

1

0.005 0.104 7.118 30.50 51.48 22.32 62.97
0.05 0.107 7.057 32.56 49.45 22.33 61.27
0.1 0.109 7.319 33.65 35.57 22.58 47.46
0.5 0.117 8.259 33.91 36.24 25.18 48.72

10

0.005 0.105 6.934 31.18 52.29 22.15 63.47
0.2 0.108 7.421 31.37 34.39 22.73 46.08
0.3 0.110 7.379 31.91 34.42 23.79 47.10
0.4 0.113 7.773 32.79 35.53 23.98 47.63

200

0.005 0.103 6.883 30.48 50.05 22.65 61.47
0.1 0.108 7.525 31.49 46.50 23.38 59.17
0.2 0.107 7.197 31.40 34.75 23.02 46.95
0.4 0.114 7.435 33.35 35.56 24.30 48.25

0.1

0.005

0.106 6.839 31.47 52.20 22.39 63.70
1 0.104 7.118 30.50 51.48 22.32 62.97

10 0.105 6.934 31.18 52.29 22.15 63.47
100 0.105 6.723 31.15 51.05 22.18 62.55

1

0.2

0.109 7.118 31.81 34.95 23.01 46.82
10 0.108 7.421 31.37 34.39 22.73 46.08

100 0.108 7.386 31.05 34.95 22.88 47.08
200 0.107 7.197 31.40 34.75 23.02 46.95

10

0.4

0.113 7.773 32.79 35.53 23.98 47.63
100 0.111 7.365 32.97 34.63 23.92 47.29
200 0.114 7.435 33.35 35.56 24.30 48.25
300 0.112 7.833 31.97 35.20 25.39 48.48

Table 8. Grid search results on the two hyper-parameters,
λsf_sm and λsf_pt based on the accuracy of monocular depth, op-
tical flow, and scene flow. The 3D point reconstruction parameter
λsf_pt contributes to more accurate disparity information on the tar-
get frame, D2-all, yielding more accurate scene flow SF1-all in the
end. The overall results are not very sensitive to the choice of the
3D smoothness parameter λsf_sm.

networks for each configuration. Our backbone network,
PWC-Net [45], has context networks at the end of the de-
coder, which are fed the output and the last feature map
from the decoder as input and perform post-processing for
better accuracy. In our splitting study, we also separate the
context networks for each separated decoder so that the two
decoders at the end of the networks do not share informa-
tion.

Fig. 7 illustrates each configuration. From our single de-
coder design in Fig. 7a, we first split the context network for
disparity and scene flow respectively, as shown in Fig. 7b.
Then, we begin to split the decoder from the last convolu-
tion layer (i.e., Fig. 7c), the 2nd-to-last layer (i.e., Fig. 7d),
and so on until eventually completely splitting into two sep-
arate decoders (i.e., Fig. 7e). To ensure the same network
capacity, we adjust the number of filters so that all configu-
rations have network parameter numbers in a similar range.
All configurations are trained on the KITTI Split of KITTI
raw [10] in our self-supervised manner.

Table 9 shows the disparity, optical flow, and scene flow
accuracy of each configuration on KITTI Scene Flow Train-
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(a) Our single decoder design.
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(c) Splitting from the last layer.
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(d) Splitting from the 2nd-to-last layer.
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(e) Splitting into two separate decoders.

Figure 7. Gradually splitting the single decoder into two separate decoders: we gradually split the single decoder (a) by first splitting
the context network (b), and then splitting from the last layer of the decoder (c), the 2nd-to-last layer (d), and so on until completely splitting
into two separate decoders(e). For ease of visualization, we omit showing the convolution operation between the neighboring feature maps
in the decoder.

ing [36, 37]. We first observe that splitting the context net-
work yields a significant 32.73% decrease in scene flow ac-
curacy (i.e., SF1-all), which mainly stems from the less ac-
curate disparity estimates (i.e., D1-all and D2-all) although
the optical flow accuracy remains almost the same. This
provides an important outlook: given the same optical flow
accuracy, the scene flow accuracy depends crucially on how
well one can decompose the optical flow cost volume into
depth and scene flow, where using the single decoder model
works better. When further splitting the decoder starting
from the last convolution layer, the networks (i) cannot be
trained stably anymore, (ii) output trivial solutions for the
disparity, and (iii) even decrease the optical flow accuracy.
This observation again confirms the benefits of using our
proposed single decoder design in terms of both accuracy
and training stability.

E. Qualitative Analysis of Loss Ablation Study

Table 2 in the main paper provides an ablation study of
our self-supervised proxy loss. For better understanding of
how each loss term affects the results, we provide quali-
tative examples of disparity, optical flow, and scene flow
estimation. Fig. 8 displays the results for each loss config-
uration: (a) the basic loss where only the brightness and
smoothness terms are active; (b) with occlusion handling,
which discards occluded pixels in the loss; (c) with the 3D
point reconstruction loss; and (d) the full loss. Each con-

Configuration D1-all D2-all F1-all SF1-all

Single decoder 31.25 34.86 23.49 47.05

Splitting the context network 44.19 45.02 23.51 62.45
Splitting at the last layer 100 97.22 26.46 100
Splitting at the 2nd-to-last layer 100 97.22 26.39 100
Splitting at the 3rd-to-last layer 100 97.22 26.94 100
Splitting at the 4th-to-last layer 100 97.22 28.68 100

Splitting into two separate decoders 100 97.22 27.63 100

Table 9. Scene flow accuracy of each decoder configuration:
splitting the context network already decreases the scene flow ac-
curacy by 32.73%. Further splitting the decoder yields training
instability with trivial solutions for the disparity output.

figuration is trained in the proposed self-supervised manner
using the KITTI Split and evaluated on KITTI Scene Flow
Training [36, 37].

Without the 3D point reconstruction loss for scene flow
(i.e., columns (a) and (b) in Fig. 8), the networks output in-
accurate disparity information for the target frame (D2) es-
pecially in the road area, which yields inaccurate scene flow
results (SF1) in the end. Applying the 3D point reconstruc-
tion loss but without occlusion handling (i.e., column (c)
in Fig. 8) results in inaccurate estimates and some artifacts
appearing on out-of-bound pixels, still leading to an unsat-
isfactory final scene flow accuracy. These artifacts happen
when the 3D point reconstruction loss tries to minimize the
3D Euclidean distance between incorrect pixel correspon-



dences, such as for occlusions or out-of-bound pixels. Dis-
carding those occluded regions in the proxy loss eventually
yields better estimates in the occluded region as well.

F. Qualitative Comparison
We provide some qualitative examples of our monocular

scene flow estimation by comparing with the state-of-the-
art Mono-SF method [3], which uses an integrated pipeline
of CNNs and an energy-based model. Figs. 9 and 10 show
successful qualitative results as well as some failure cases of
our fine-tuned model on the KITTI 2015 Scene Flow public
benchmark [36, 37], respectively.

In Fig. 9, our model outputs more accurate disparity and
optical flow estimation results than Mono-SF [3] without
using an explicit planar surface representation or a rigid
motion assumption, which would be beneficial for achiev-

ing better accuracy on the KITTI 2015 Scene Flow public
benchmark.

Fig. 10, in contrast, shows some of the failure cases,
where our model outputs less accurate results for scene flow
estimation than Mono-SF [3]. Although our model can esti-
mate optical flow with an accuracy comparable to Mono-SF,
inaccurate disparity estimation eventually leads to less ac-
curate scene flow. The gap in terms of the disparity accuracy
of ours vs. Mono-SF [3] can be explained by the fact that
Mono-SF exploits over 20 000 instances of pseudo ground-
truth depth data to train their monocular depth model, while
our method uses only 200 images for fine-tuning.

References
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Figure 8. Qualitative examples on the loss ablation study. For each scene in the first row we show two input images, the reference and
the target image. From the second to the last row, we show a qualitative comparison of each loss configuration: (a) basic loss, (b) with
occlusion handling, (c) with 3D point reconstruction loss, and the (d) our full loss. Each row visualizes the disparity map of the reference
image (D1) with its error map (D1 Error), disparity estimation at the target image mapped into the reference frame (D2) along with its error
map (D2 Error), optical flow (F1) with its error map (F1 Error), and the scene flow error map (SF1 Error). The outlier rates are overlayed
on each error map. The last column shows (e) the ground truth for each estimate.
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Figure 9. Some successful cases and qualitative comparison with the state of the art on the KITTI 2015 Scene Flow public bench-
mark [36, 37]. In the first row, we show two input images, the reference and target image. From the second to the last row, we give a
qualitative comparison with Mono-SF [3]: the disparity map of the reference image (D1) with its error map (D1 Error), disparity estimation
at the target image mapped into the reference frame (D2) along with its error map (D2 Error), optical flow (F1) with its error map (F1
Error), and the scene flow error map (SF1 Error). The outlier rates are overlayed on each error map.
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Figure 10. Failure cases and qualitative comparison with the state of the art on the KITTI 2015 Scene Flow public benchmark
[36, 37]. In the first row, we show two input images, the reference and target image. From the second to the last row, we give a qualitative
comparison with Mono-SF [3]: the disparity map of the reference image (D1) with its error map (D1 Error), disparity estimation at the
target image mapped into the reference frame (D2) with its error map (D2 Error), optical flow (F1) with its error map (F1 Error), and the
scene flow error map (SF1 Error). The outlier rates are overlayed on each error map.


