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Abstract

This supplemental materials contain the following additional information: details of metrics compu-
tation (section 1); theoretical results on choosing µ-schedule (section 2); full details of all experiments
with additional plots and extended tables: LeNets (section 4.1), VGGs (section 4.2), ResNets (section
4.3), NIN (section 4.4) and AlexNet (section 4.5); extended comparison to the networks trained on the
CIFAR10 dataset (section 4.6).

1 Metrics computation

1.1 Ratios

The compression ratio ρstorage is defined wrt the storage bits, in the following way:

ρstorage =
bits (reference)

bits (compressed)
=

params (reference)

params (compressed)
, (1)

here the ratio of bits is equivalent to the ratio of params since all low-rank structures can be directly
expressed as a sequence of layers. Unless specifically mentioned, we apply simple parametrization involving
U,V matrices, and report corresponding compression ratios.

The ratio of FLOPs is defined in the similar way:

ρFLOPs =
FLOPs (reference)

FLOPs (compressed)
, (2)

where the exact definition of FLOPs is given in the next subsection.

1.2 Number of floating point operations, FLOPs

There is no clear consensus in the literature on how to compute the total number of floating point operations,
FLOPs1, in the forward pass of a neural network. While some authors define this number as a total number
of multiplications and additions (e.g., [22]), others count one multiplication and addition as a single operation
(e.g., [4]), assuming multiplications and additions can be fused. In this work, we adopt the latter definition
of FLOPs — the total number of fused multiplications and additions incurred by all layers in the network.

FLOPs in fully-connected layer For a fully-connected layer with weightsW ∈ R
m×n and biases b ∈ R

m

the total number of FLOPs is

fc-FLOPs (W,b) = m× (n− 1)
mult/ads in Wx

+ m
adds in b

= mn.

1The term MAC — multiply/accumulate counts is widely used too.
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FLOPs in convolutional layer Each convolutional layer with parameters W,b is a linear mapping
applied multiple (M) times. Thus, FLOPs defined as:

conv-FLOPs = fc-FLOPs (W,0)×M + fc-FLOPs (0,b)

Our definition of FLOPs omits the batch-normalization (BN) and concatenation/copy operations. Here
is how we treat them. For BN layers, the BN parameters can be fused into the weights and biases of
the preceding layer, therefore no special treatment is required. For concatenations, copy operations, and
nonlinearities we assume zero FLOPs due to its negligible cost.

2 On the µ-schedule and beginning of the path

Our algorithm belongs to the class of homotopy methods, and follows a path indexed by a user defined
schedule over values of µ = µ0, µ1, . . . , etc. (see pseudo code in the main paper). Particularly, the solution
of the C-step for the layer k is given by:

min
r

λCk(r) +
µ

2

Rk∑

i=r+1

s2ki s.t. rk ∈ {0, 1, . . . , Rk} (3)

and traces a path r(µ) for every value of µ, and implicitly a path over U(µ),V(µ). The beginning of the
path is when µ = 0, for which the solution is r = 0. Since the ranks are discrete valued, the selected rank
r = 0 will be unchanged until some threshold of µ+

k is reached. The knowledge of this threshold helps us to
come up with a better µ schedule, and especially with a choice of the initial value for µ0.

The solution of (3) will be r = 0 as long as the rank-0 approximation is yielding a better loss than the
rank-1 approximation, i.e., for all µ satisfying:

λCk(0) +
µ

2

Rk∑

i=1

s2ki < λCk(1) +
µ

2

Rk∑

i=2

s2ki ⇐⇒ µ ≤ µ+
k :=

2λCk(0)

s2k1
. (4)

Here we defined the threshold µ+
k by solving LHS. This result implicitly depends on µ-value itself, as sk1

is the largest singular value of the matrix Wk(µ
+). However, if we assume Wk(µ

+) ≈ Winit
k , we can take

sk1 = σ1(W
init
k ), and compute the threshold µ+

k for layer k. Then we set as initial value µ0 the smallest µ+
k

across all layers:
µ0 = min

k
µ+
k (5)

In our experiments, we choose the value for µ0 to be greater or equal to the result suggested by (5).

3 Baselines for rank selection

We adopt the following baselines proposed in the literature to compare to our method.

Baseline 1 [24] proposed to estimate the reduced ranks of the weight matrices by solving the following
minimization problem over the ranks:

max
r1,...,rl

∏

l

rl∑

i=1

σl,i s.t.
∑

l

rl
rank (Wl)

Cl ≤ p · C, (6)

where σl,i is is i-th singular value of the layer l, Cl is the number of FLOPs in the forward pass through
the layer l, C is the total number of FLOPs required for the forward pass, and p ∈ (0, 1) is a user provided
parameter that allows to obtain various sized models. This optimization problem maximizes the accumulated
energy subject to a complexity constraint, and is solved greedily by removing one rank at a time from a
layer which reduces the objective function (6) the least, starting from full ranks ri = rank (Wi).
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Baseline 2 Even simpler heuristic is to choose the rank ri such that ri-rank approximation is within p-ratio
of the original matrix, i.e., the highest rank satisfying ‖UV‖F ≤ p‖W‖F . For example, [20] use p = 0.95
and [21] use both p = 0.95 and p = 0.99. By varying this ratio p we can obtain different sized models, which
we fine-tune and report results.

4 Experiments

This section contains full details of all the experiments on our rank selection method and baselines, and
supplements it with additional plots and extended tables. Our experiments and the baselines are run in the
following way:

rank selection −→ re-parametrization −→ fine-tuning.

Here, the re-parametrization is a process of converting low-rank matrices to a sequence of fully-connected or
convolutional layers. If during the re-parametrization step some of the ranks are not efficient, i.e., leading to
more storage or computation depending on optimization criterion C(r), we leave such layers as a full rank
without changing its parametrization. We report the compression ratios of memory and FLOPs with respect
to the final re-parametrized version of a neural network. For experiments reported in this suppl. mat. we
use the computational cost criterion C(r) = FLOPs (r) × 10−6, i.e., defined wrt MFLOPS.

4.1 LeNet-s on MNIST

We train LeNet300, LeNet5 [10] on MNIST dataset (10 classes, 60k grayscale images of 28 × 28). The full
details of these architectures can be found in Table 1. Images are first normalized to have grayscales between
0 and 1 and then the mean image was subtracted. We report results obtained at the end of the training.

Reference nets are trained with Nesterov’s accelerated SGD [16] with momentum of 0.9 on minibatches
of size 256. The loss is average cross entropy. Networks are trained for 300 epochs with an initial learning
rate of 0.1 decayed by 0.99 after every epoch. The resulting test errors are 1.98% for LeNet300 and 0.55%
for LeNet5.

Rank learning via our algorithm is run for 30 LC iterations, with µ = 0.001× 1.1k at k-th iteration for
both LeNet300 and LeNet5. Each L-step is performed by Nesterov’s SGD with momentum 0.9 and run for
30 epochs with an initial learning rate of 0.1 decayed by 0.98 after each L-step. Fine-tuning is performed
on the network which directly parametrize low rank as a sequence of fully-connected or convolutional layers,
with Nesterov’s SGD with momentum 0.9 for 100 epochs and an initial learning rate of 0.02 decayed by 0.99
after each epoch. Runtime. Training time of our networks is 3× of the training time of the reference net.

LeNet300

Layer Connectivity

Input 28× 28 image
1 fully connected, 300 neurons,

followed by tanh
2 fully connected, 100 neurons,

followed by tanh
3
(output)

fully connected, 10 neurons,
followed by softmax

P1 = 266200 weights, P0 = 410 biases

LeNet5

Layer Connectivity

Input 28× 28 image
1 convolutional, 20 5× 5 filters (stride=1),

total 11 520 neurons, followed by ReLU
2 max pool, 2× 2 window (stride=2),

total 2 280 neurons
3 convolutional, 50 5× 5 filters (stride=1),

total 3 200 neurons, followed by ReLU
4 max pool, 2× 2 window (stride=2),

total 800 neurons
5 fully connected, 500 neurons and dropout

with p = 0.5, followed by ReLU
6
(output)

fully connected, 10 neurons and dropout
with p = 0.5, followed by softmax

P1 = 430500 weights, P0 = 580 biases

Table 1: Structure of the LeNet300 and LeNet5 neural nets trained on the MNIST dataset.
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λ× 10−3 ranks params FLOPs
Before fine-tuning After fine-tuning

ρFLOPs ρstoragelogL Etrain Etest logL Etrain Etest

R [300 100 10] 0.26M 0.26M -3.68 0.00 1.98 1.00 1.00
.25 [35 16 9] 46 150 45 330 -3.45 0.17 1.88 -4.11 0.00 1.87 5.87 5.77
.50 [28 13 9] 37 362 36 542 -3.39 0.47 1.99 -4.06 0.00 2.00 7.28 7.12
.75 [25 12 9] 33 710 32 890 -3.35 1.87 2.05 -4.03 0.00 2.05 8.09 7.90

L
eN

et
3
0
0

1 [24 10 9] 31 826 31 006 -3.32 4.39 2.03 -4.02 0.00 2.06 8.59 8.36
2 [18 9 9] 24 922 24 102 -2.98 8.47 2.38 -3.88 0.00 2.39 11.04 10.68
3 [16 8 9] 22 354 21 534 -2.37 13.89 2.77 -3.78 0.00 2.72 12.36 11.91
4 [10 7 9] 15 450 14 630 -0.50 14.89 10.34 -2.04 0.13 4.58 18.20 17.23

Figure 1: Detailed table of our experiments on the LeNet300. We report: training loss logL and training
and test classification error Etrain and Etest (%); reduction of FLOPs (ρFLOPs) and parameters (ρstorage).

λ× 10−3 ranks params FLOPs
Before fine-tuning After fine-tuning

ρFLOPs ρstoragelogL Etrain Etest logL Etrain Etest

R [20 50 500 10] 0.43M 2.29M -6.27 0.00 0.55 1.00 1.00
0.4 [5 5 14 9] 26 855 328 390 -2.55 0.17 1.00 -3.73 0.01 0.75 6.98 16.04
1.0 [4 5 9 9] 20 310 295 970 -0.42 0.47 11.18 -3.27 0.01 0.82 7.75 21.20
1.1 [3 3 9 9] 19 165 199 650 0.25 1.87 43.79 -2.28 0.16 1.33 11.49 22.47

L
eN

et
5

1.4 [2 3 9 9] 19 120 173 730 0.27 4.39 57.79 -2.14 0.21 1.44 13.20 22.52
2.0 [2 2 9 9] 18 570 138 530 0.33 8.47 67.57 -1.75 0.57 1.66 16.55 23.19
2.4 [2 1 8 9] 16 720 102 030 0.37 13.89 77.52 -1.11 2.48 2.90 22.47 25.76
3.0 [1 1 7 9] 15 375 74 810 0.59 14.89 88.65 -0.98 3.39 3.80 30.65 28.01

Figure 2: Detailed table of our experiments on the LeNet5. We report: training loss logL and training and
test classification error Etrain and Etest (%); reduction of FLOPs (ρFLOPs) and parameters (ρstorage).

4.2 VGGs on CIFAR10

We train the VGG16 and VGG19 [18] adapted for the CIFAR10 dataset (10 classes, 60k RGB images of
32×32). We employ batch normalization after every layer except the last, and dropouts after fully connected
layers (see Table 2 for the full details). Images in the dataset are normalized channel wise to have zero mean
and variance one. For training, we use simple augmentation (random horizontal flip, zero pad with 4 pixels
on each side and randomly crop 32× 32 image). For test we use normalized images without augmentation.
We report results obtained at the end of the training. The loss is average cross entropy with ℓ2 weight decay.
The resulting nets have 15M (VGG16) and 20M (VGG19) parameters, and require 313 MFLOPs and 399
MFLOPs respectively.

Reference nets are trained with Nesterov’s accelerated SGD [16] with momentum of 0.9 on minibatches
of size 128. The loss is average cross entropy with a weigth decay of 5× 10−4. Networks are trained for 300
epochs with an initial learning rate of 0.05 decayed by 0.97716 after every epoch. The resulting test errors
are 6.57% (VGG16) and 6.47% (VGG19).

Rank learning via LC algorithm is run for 60 LC iterations, with µ = 2 × 10−5 × 1.2k at k-th iteration.
Each L-step is performed by Nesterov’s SGD with momentum of 0.9 and run for 15 epochs with learning
rate of 0.07 at the beginning of the step and decayed by 0.99 after each epoch. Fine-tuning is performed
on the network which directly parametrize low rank as a sequence of fully-connected or convolutional layers
with Nesterov’s SGD with momentum 0.9 for 300 epochs, with the initial learning rate 7×10−4 and decayed
by 0.99 after each epoch. Training time. Running the LC algorithm with fine-tuning is 3 times longer
comparing to the training of the reference network. The results are presented in Table 3.

Baselines. As discussed in Section 3, we train models with two different baselines. We remind in passing
that baseline 1 is due to Zhang et al. [24], and baseline 2 is a simple singular value thresholding scheme
used across the literature. Every baseline is controlled by a single hyperparameter, by varying which we
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λ, 10−3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . . .

R . . .

.25 . . .

.50 . . .

.75 . . .

1 . . .

2

3

4

Figure 3: Neurons of the first layer of the compressed LeNet300 looking at an input image for different λ
values, thus different compression levels; Each column i in the table corresponds to a reshaped i-th row of
V in the order of decreasing singular values (from left to right). As you can see, neurons corresponding to
the larger singular values (left) behave as smooth, low-pass filters and neurons corresponding to the smaller
singular values (right) shows more oscillatory, high-pass filter behavior. As compression level increases (to
bottom), neurons become noisier. Every image has been normalized to have maximum intensity of 1. Red:
positive weights, blue: negative, white: zero, up to first 20 neurons are shown.

obtain different low-rank neural networks. Each obtained network is fine-tuned using Nesterov’s SGD for 600
epochs with the initial learning rate of 0.001, which is decayed by 0.99 after every epoch. The comparison
between our algorithm and the baselines is given in Figure 4.

Selected ranks We plot selected ranks for each layer of the VGG16 and VGG19, and corresponding
FLOPs of these decompositions obtained by running our algorithm, see Figure 5. We see that selected ranks
are not uniform at all, and some layers, e.g., the layers 5 and 9 of VGG16, have much higher ranks comparing
to others. Most importantly, their relative proportion does not stay the same for different λ values. Take a
look at the layers 10 and 11 of the VGG16 in Figure 5, for the value of λ = 0.5 the selected rank of layer
10 is greater than of layer 11, but for a higher value of λ = 0.8, the relation is reversed. These relations can
not be captured by simple heuristics, and need to be inferred in an optimal way.

The ranks of convolutional layers do not correspond exactly to its contributed FLOPs, as each filter gets
applied multiple times to the same input. Therefore, the layers with the higher ranks are not the ones with

VGG16 VGG19 VGG16 VGG19
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Figure 4: Comparison of our rank selection algorithm to the baselines on VGG16 and VGG19. Baseline 1
is due to Zhang et al. [24], and baseline 2 is a simple singular value thresholding scheme used across the
literature. Left figures: loss vs FLOPs reduction ratio (ρFLOPs), right figures: test error vs ρFLOPs. As you
can see our algorithm achieves both lower loss and better accuracy throughout. For details of training refer
to text.
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higher computational cost, e.g., see the layers 4 and 5 of VGG16. In general, VGG architecture is considered
to be highly over-parametrized, which we empirically confirm by reducing its computational workload by
factors of 4–6× and number of parameters by 5–9× without any degradation in test accuracy.

Layer Connectivity

Input 32× 32 image
1 convolutional, 64 3× 3 filters (stride=1), followed by BN and ReLU
2 convolutional, 64 3× 3 filters (stride=1), followed by BN and ReLU

max pool, 2× 2 window (stride=2)
3 convolutional, 128 3× 3 filters (stride=1), followed by BN and ReLU
4 convolutional, 128 3× 3 filters (stride=1), followed by BN and ReLU

max pool, 2× 2 window (stride=2)
5 convolutional, 256 3× 3 filters (stride=1), followed by BN and ReLU
6 convolutional, 256 3× 3 filters (stride=1), followed by BN and ReLU
7 convolutional, 256 3× 3 filters (stride=1), followed by BN and ReLU

max pool, 2× 2 window (stride=2)
8 convolutional, 512 3× 3 filters (stride=1), followed by BN and ReLU
9 convolutional, 512 3× 3 filters (stride=1), followed by BN and ReLU
10 convolutional, 512 3× 3 filters (stride=1), followed by BN and ReLU

max pool, 2× 2 window (stride=2)
11 convolutional, 512 3× 3 filters (stride=1), followed by BN and ReLU
12 convolutional, 512 3× 3 filters (stride=1), followed by BN and ReLU
13 convolutional, 512 3× 3 filters (stride=1), followed by BN and ReLU

max pool, 2× 2 window (stride=2)
14 fully connected, 512 neurons and dropout

with p = 0.5, followed by ReLU
15 fully connected, 512 neurons and dropout

with p = 0.5, followed by ReLU
16
(output)

fully connected, 10 neurons, followed by softmax

14981952 weights, 8970 biases, 8448 running means/variances for BN

Table 2: Structure of the adapted VGG16 network for the CIFAR10 dataset. BN–Batch Normalization,
ReLU – rectified linear units. The VGG19 is adapted in a similar way.
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λ× 10−4# params
MFLOPs

Before fine-tuning After fine-tuning
ρFLOPs ρstorage×106 logL Etrain Etest logL Etrain Etest

R 14.9 313.46 -0.89 0.00 6.57 1.00 1.00
0.50 3.81 132.19 -1.19 0.03 6.44 -1.28 0.00 6.17 2.37 3.93
0.75 3.16 107.34 -1.18 0.02 6.70 -1.27 0.00 6.11 2.92 4.75
1.00 2.75 92.44 -1.17 0.02 6.78 -1.27 0.00 6.36 3.39 5.44

V
G
G
1
6

2.00 2.00 68.29 -1.11 0.10 7.24 -1.25 0.00 6.59 4.59 7.48
3.00 1.70 58.00 -1.09 0.13 7.37 -1.23 0.00 6.68 5.40 8.84
4.00 1.53 52.21 -1.07 0.17 7.92 -1.22 0.00 7.22 6.00 9.79
6.00 1.32 45.56 -1.03 0.39 8.40 -1.21 0.00 7.28 6.88 11.31
8.00 1.21 41.48 -0.99 0.69 8.26 -1.21 0.00 7.37 7.56 12.37

R 20 398.39 -0.88 0.00 6.47 1.00 1.00
1.00 3.92 104.63 -1.15 0.02 6.72 -1.26 0.00 6.33 3.81 6.95
1.50 2.47 88.36 -1.12 0.08 7.30 -1.25 0.00 6.38 4.51 8.21
2.00 2.21 78.55 -1.11 0.06 7.22 -1.18 0.02 6.97 5.07 9.19

V
G
G
1
9

3.00 1.88 67.19 -1.07 0.18 7.94 -1.22 0.00 7.07 5.93 10.80
4.00 1.69 60.36 -1.04 0.34 8.01 -1.22 0.00 6.87 6.60 12.01
6.00 1.44 52.49 -1.00 0.61 8.28 -1.21 0.00 6.96 7.59 14.09
8.00 1.28 45.72 -0.99 0.71 8.20 -1.26 0.01 7.48 8.71 15.86
30.0 0.76 27.19 -0.24 17.07 19.10 -1.15 0.46 9.68 14.65 26.79

Table 3: Detailed table of our experiments on VGG16 and VGG19. We report: loss L, training and test
classification error Etrain and Etest (%); reduction in FLOPs wrt reference, ρFLOPs; and reduction in the
number of parameters wrt reference, ρstorage. Logarithms are base 10.
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Figure 5: Some final selected architectures in terms of the rank of a layer and FLOPs of a layer for VGG16
and VGG19 using our method. For λ values, the multiplicative factor of ×10−4 is omitted.
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4.3 ResNets on CIFAR10

We train ResNets [4] of depth 20, 32, 56 and 110 layers (0.27M, 0.46M, 0.85M, and 1.7M parameters,
respectively) on the CIFAR10 dataset using the same augmentation setup as in [4]. Images in the dataset
are normalized to have channel-wise zero mean, variance 1. For training, we use random horizontal flip, zero
pad with 4 pixels on each side and randomly crop 32× 32 image. For test we use normalized images without
augmentation. We report results obtained at the end of the training. The loss is average cross entropy with
a weight decay (as in the original paper). We train reference nets, nets compressed with our LC algorithm
and with baselines, followed by fine-tuning of the resulting weights.

Reference nets are trained with Nesterov’s SGD [16] with the momentum of 0.9 on minibatches of size
128. The loss is average cross entropy with a weight decay of 10−4, weights are initialized following [3]. The
network is trained for 200 epochs with learning rate of 0.1 which is divided by 10 after 100 and 150 epochs.

Our rank learning algorithm is run for 50 LC iterations, with µ = ×10−3 × 1.25k at k-th iteration. Each
L-step is performed by Nesterov’s SGD with momentum of 0.9 and run for 15 epochs with learning rate of
0.001 at the beginning of the step and decayed by 0.99 after each epoch. Fine-tuning is performed on the
network which directly parametrize low rank as a sequence of fully-connected or convolutional layers with
Nesterov’s SGD with momentum of 0.9 for 200 epochs, the initial learning rate of 7× 10−4 which is decayed
by 0.99 after each epoch. Runtime. Running the LC with fine-tuning is 3.75 times longer comparing to the
training of the reference network.

Baselines. As discussed in Section 3, we train models with two different baselines. We remind in passing
that baseline 1 is due to Zhang et al. [24], and baseline 2 is a simple singular value thresholding scheme used
across the literature. Every baseline is controlled by a single hyperparameter, by varying which we obtain
different low-rank neural networks. Each obtained network is fine-tuned using Nesterov’s SGD with learning
rate of 0.002 (with learning rate decay of 0.99 after every epoch) and momentum of 0.9 for 600 epochs. The
comparison between our algorithm and baselines is given in Figure 6.

ResNet20 ResNet32 ResNet56 ResNet110

2 3 4 5

.05

.10

.15

.20

.25

lo
ss

L
(W

)

R

our
baseline 1
baseline 2

2 3 4 5 6

R

2 3 4 5 6 7

R

4 6 8 10

R

2 3 4 5

6

8

10

12

te
st

er
ro
r,
%

ρFLOPs

R

our
baseline 1
baseline 2

2 3 4 5 6
ρFLOPs

R

2 3 4 5 6 7
ρFLOPs

R

4 6 8 10
ρFLOPs

R

Figure 6: Comparison of our rank selection algorithm to the baselines on ResNet-s. Baseline 1 is due to
Zhang et al. [24], and baseline 2 is a simple singular value thresholding scheme used across the literature.
Top figures: loss vs FLOPs reduction ratio (ρFLOPs), right figures: test error vs ρFLOPs. As you can see our
algorithm achieves both lower loss and better accuracy and fewer FLOPs throughout. For details of training
refer to text.
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λ× 10−3# params
MFLOPs

Before fine-tuning After fine-tuning
ρFLOPs ρstorage×106 logL Etrain Etest logL Etrain Etest

R 0.26 40.55 -0.80 0.22 8.35 1.00 1.00
1 0.18 26.38 -1.24 0.17 8.87 -1.28 0.05 8.76 1.54 1.54
2 0.15 22.63 -1.18 0.47 9.08 -1.25 0.13 9.22 1.79 1.78
4 0.11 17.38 -0.98 1.87 9.72 -1.12 0.79 9.49 2.33 2.36

R
es
N
et
-2
0

8 0.09 13.47 -0.78 4.39 9.91 -0.92 2.51 9.87 3.01 3.16
16 0.06 10.58 -0.58 8.47 12.26 -0.73 5.18 10.97 3.83 4.18
32 0.05 8.94 -0.41 13.89 14.67 -0.58 7.95 12.89 4.54 5.17

R 0.46 68.86 -0.82 0.06 7.14 1.00 1.00
1 0.28 40.17 -1.36 0.02 7.98 -1.38 0.00 8.03 1.71 1.68
2 0.24 35.07 -1.33 0.07 8.26 -1.36 0.01 8.27 1.96 1.91
4 0.18 26.55 -1.21 0.47 8.42 -1.30 0.11 8.37 2.59 2.63

R
es
N
et
-3
2

8 0.13 20.18 -0.96 2.44 9.50 -1.13 0.89 9.25 3.41 3.60
16 0.09 14.79 -0.65 7.28 10.96 -0.83 3.77 10.56 4.66 5.23
32 0.07 12.00 -0.42 12.08 14.38 -0.65 6.50 11.52 5.74 6.74

R 0.85 125.49 -0.81 0.02 6.58 1.00 1.00
1 0.45 63.35 -1.41 0.01 7.16 -1.43 0.00 7.18 1.98 1.89
2 0.41 57.61 -1.41 0.01 7.17 -1.43 0.00 7.35 2.18 2.08
4 0.29 43.12 -1.37 0.07 7.74 -1.40 0.01 7.52 2.91 2.93

R
es
N
et
-5
6

8 0.20 30.38 -1.16 1.02 8.38 -1.30 0.22 8.34 4.13 4.28
16 0.13 20.98 -0.78 4.90 9.80 -1.01 1.89 9.08 5.98 6.49
32 0.10 16.01 -0.53 9.92 12.69 -0.75 4.96 11.13 7.84 8.43

R 1.7 252.88 -0.77 0.01 6.02 1.00 1.00
1 0.79 100.53 -1.41 0.01 6.75 -1.42 0.00 6.73 2.52 2.20
2 0.72 93.76 -1.43 0.00 6.83 -1.44 0.00 6.65 2.70 2.40
4 0.50 71.78 -1.41 0.02 6.98 -1.42 0.01 6.72 3.52 3.44

R
es
N
et
-1
1
0

8 0.33 50.64 -1.32 0.21 7.56 -1.37 0.05 7.27 4.99 5.18
16 0.22 33.75 -0.96 2.49 9.55 -1.15 0.89 8.75 7.49 7.81
32 0.16 24.89 -0.53 7.32 12.60 -0.85 3.50 9.85 10.16 10.72

Table 4: Detailed table of our experiments on ResNet20, 32, 56, 110. We report: training loss L and training
and test classification error Etrain and Etest (%); reduction of FLOPs ρFLOPs and reduction of parameters
ρstorage; logarithms are base 10.
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Figure 7: Some final selected architectures in terms of selected rank and resulting FLOPs per layer, when
using our method for different λ values on ResNet-s. The multiplicative factor of ×10−3 of λ is omitted.
The ranks of last fully-connected layer are not depicted, as the layer was not the part of the rank-selection
process. There is a couple of interesting observation we can make. First, the rank of the pen-ultimate layer
is always near the value of 10, no matter whether we are enforcing a lot of compression (λ = 32× 10−3) or
not much (λ = 1× 10−3). Second, the selected architectures per network, relate in a non-linear way to each
other, and a simple rule-based approach will not work.
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4.4 Network-in-Network (NIN) on CIFAR10

Network-in-Network (NIN) is a neural network architecture proposed by Lin et al. [14]. Although being
widely known and cited, the exact architecture and the training procedure are not given in the original
paper2. Therefore we referred to a paper of Tai et al. [19], and their code in Torch3 to train the network for
CIFAR10 dataset.

Reference network contains 9 layers and 965568 parameters, and fully outlined in Table 5. The weights
were initialized following He et al. [3]. The network was trained using the cross entropy loss with ℓ2 weight
decay of 5 × 10−4, using Nesterov’s accelerated SGD with an initial learning rate of 0.1 for 900 epochs.
The learning rate was scaled by 0.1 at epochs 350, 600, 700, 800. During the training we used a simple
augmentation consisting of random horizontal flip, zero padding with 4 pixels on each side followed by
random crop of 32 × 32. The resulting test accuracy was 8.87%, which is similar to the result of 8.81%
described in [14].

Rank selection experiments are run for 60 LC iterations, with µ = 2 · 10−5 × 1.2k at k-th iteration. Each
L-step is performed by Nesterov’s SGD with momentum 0.9 and run for 20 epochs with learning rate of
0.0007 at the beginning of the step and decayed by 0.99 after each epoch. Fine-tuning is performed on the
network which directly parametrize low rank as a sequence of fully-connected or convolutional layers with
Nesterov’s SGD with momentum 0.9 for 500 epochs, with the initial learning rate 5 × 10−4 and decayed
by 0.99 after each epoch. Runtime. Running the LC with fine-tuning is 3.5 times longer comparing to the
training of the reference network.

Baselines. As discussed in Section 3, we train models with two different baselines. We remind that
baseline 1 is due to Zhang et al. [24], and baseline 2 is a simple singular value thresholding scheme used
across the literature. Every baseline is controlled by a single hyperparameter, by varying which we obtain
different low-rank neural networks. Each obtained network is fine-tuned using Nesterov’s SGD with learning
rate of 0.001 (decayed by 0.99 after every epoch) and momentum of 0.9 for 600 epochs. The comparison
between our algorithm and the baselines is given in Figure 8.

Layer Connectivity

Input 32× 32 image
1 convolutional, 192 5× 5 filters (stride=1, padding=2), followed by BN and ReLU
2 convolutional, 160 1× 1 filters (stride=1, padding=0), followed by BN and ReLU
3 convolutional, 96 1× 1 filters (stride=1, padding=0), followed by BN and ReLU

max pool, 3× 3 window (stride=2, padding=1)
4 convolutional, 192 5× 5 filters (stride=1, padding=2), followed by BN and ReLU
5 convolutional, 192 1× 1 filters (stride=1, padding=0), followed by BN and ReLU
6 convolutional, 192 1× 1 filters (stride=1, padding=0), followed by BN and ReLU

max pool, 3× 3 window (stride=2, padding=1)
7 convolutional, 192 3× 3 filters (stride=1, padding=1), followed by BN and ReLU

max pool, 2× 2 window (stride=2)
8 convolutional, 192 1× 1 filters (stride=1, padding=0), followed by BN and ReLU
9 convolutional, 10 1× 1 filters (stride=1, padding=0), followed by BN and ReLU
(output) max pool, 3× 3 window (stride=2, padding=1), followed by softmax

965568 weights, 1418 biases, 1418 running means/variances for BN

Table 5: Structure of the adapted NIN network for the CIFAR10 dataset. BN–Batch Normalization, ReLU
– rectified linear units.

2However, authors do provide a link to config of the network, in https://github.com/mavenlin/cuda-convnet/
3https://github.com/chengtaipu/lowrankcnn
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λ× 10−5# params
MFLOPs

Before fine-tuning After fine-tuning
ρFLOPs ρstorage×106 logL Etrain Etest logL Etrain Etest

R 0.97 222.48 -0.77 0.16 8.87
2.5 0.47 106.85 -1.41 0.17 9.24 -1.47 0.05 8.86 2.08 2.05
5 0.42 90.98 -1.43 0.38 9.61 -1.55 0.13 9.38 2.45 2.30
7.5 0.36 80.43 -1.35 0.73 9.80 -1.50 0.31 9.53 2.77 2.71
10 0.32 73.25 -1.27 1.03 10.19 -1.42 0.54 9.79 3.04 3.03
15 0.27 64.22 -1.12 2.01 10.38 -1.28 1.10 9.72 3.46 3.54
20 0.25 58.58 -1.04 2.63 10.46 -1.18 1.65 10.11 3.80 3.90
25 0.23 53.60 -0.94 3.41 11.00 -1.08 2.31 10.69 4.15 4.28
30 0.22 51.30 -0.89 3.98 10.84 -1.03 2.74 10.45 4.34 4.46
40 0.20 46.10 -0.78 5.16 11.61 -0.92 3.61 10.93 4.83 4.96

N
IN 50 0.18 42.85 -0.72 6.09 12.05 -0.85 4.44 11.54 5.19 5.25

60 0.17 40.35 -0.65 7.41 12.51 -0.79 5.33 11.56 5.51 5.54
70 0.16 37.44 -0.57 9.00 14.36 -0.72 6.25 12.55 5.94 5.95
90 0.14 33.57 -0.44 12.50 17.03 -0.63 7.78 13.08 6.63 6.69
130 0.13 29.67 -0.33 15.75 18.69 -0.53 9.83 14.71 7.50 7.49
140 0.13 28.82 -0.31 16.47 19.09 -0.50 10.57 15.17 7.72 7.63
200 0.12 27.07 -0.27 18.24 20.60 -0.46 11.77 15.44 8.22 8.02
300 0.11 23.67 0.04 35.99 37.45 -0.41 13.36 17.44 9.40 9.01
350 0.10 22.53 0.01 34.24 35.63 -0.28 18.18 21.27 9.88 9.76

Table 6: Detailed table of our experiments on the NIN. We report: training loss L and training and test
classification error Etrain and Etest (%); reduction of FLOPs ρFLOPs and reduction of parameters ρstorage;
logarithms are base 10.
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Figure 8: Comparison of our rank selection algorithm to the baselines on the Network-in-Network (NIN).
Baseline 1 is due to Zhang et al. [24], and baseline 2 is a simple singular value thresholding scheme used
across the literature. Left figure: loss vs FLOPs reduction ratio (ρFLOPs), right figure: test error vs ρFLOPs.
Our algorithm achieves both lower loss and better accuracy throughout. For details of training refer to the
text.
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Figure 9: Some selected architectures for our algorithm on NIN. For λ values, the multiplicative factor of
×10−5 is omitted.
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4.5 AlexNet on ImageNet

AlexNet [9] is one of the first convolutional networks trained on large scale image recognition task— ImageNet
[17]. The dataset contains 1.2M colored images of various resolution of 1000 different classes. For all AlexNet
experiments we report single view top-1 and top-5 errors (see below for more details).

Reference Network We train Batch Normalized version of the AlexNet having 62M parameters (see
Table 7), closely following the data-augmentation scheme of the original paper [9]. For completeness, we
give the data-augmentation scheme here: images are resized to have the smallest dimension of 256 pixels,
and random 227× 227 image is cropped during the training. Cropped images are normalized, and lightening
augmentation of [9] is applied. During testing, a central crop is obtained. We train reference model for 100
epochs with an initial learning rate of 0.05 and weight decay amount of 5× 10−5. We decrease the learning
rate by factor of 0.1 every 20 epochs. The reference model achieves Top-1 validation accuracy of 57.71% and
Top-5 validation accuracy of 80.45%. Training time on Titan V GPU is 17 hours.

Layer Connectivity

Input 227× 227 image
1 convolutional, 96 11× 11 filters (stride=4, padding=2) → BN → ReLU

max pool, 3× 3 window (stride=2, padding=0)
2 convolutional, 256 5× 5 filters (stride=1, padding=2) → BN → ReLU

max pool, 3× 3 window (stride=2, padding=0)
3 convolutional, 384 3× 3 filters (stride=1, padding=1) → BN → ReLU

max pool, 3× 3 window (stride=2, padding=1)
4 convolutional, 384 3× 3 filters (stride=1, padding=1) → BN → ReLU

max pool, 3× 3 window (stride=2, padding=0)
5 convolutional, 256 3× 3 filters (stride=1, padding=1) → BN → ReLU

max pool, 3× 3 window (stride=2, padding=0)
6 fully connected, 9216× 4096 → BN → ReLU → Dropout
7 fully connected, 4096× 4096 → BN → ReLU → Dropout
8 fully connected, 4096× 1000
(output) softmax

62 378 344 weights, 1000 biases, 9568 running means/variances for BN, 1139 MFLOPs

Table 7: The structure of BatchNormalized AlexNet network for the ImageNet dataset. BN–Batch Normal-
ization, ReLU – rectified linear units.

Our BN-AlexNet has slightly more floating point operations comparing to the original paper, 1139M
vs. 724M, which is due to the absence of group convolutions on the layers 1,3, and 5. To avoid confusion,
whenever we are comparing to original AlexNet or Caffe-AlexNet (as reported in [2]), we will be reporting
achieved number of FLOPs in the final model.

Rank Selection experiments We run our experiments for 30 LC steps with µk = 0.5 × 10−3 × 1.2k at
k-th L-step. All L-steps are run for 5 epoch with a minibatch size of 256, the first 20 L-steps have initial
learning rate of 0.001 decayed by 0.9 at every epoch, and the last 10 L-steps have initial learning rate 0.0005
with decay factor of 0.9 after every epoch. Learning rates for each L-step are restarted. We finally fine-tune
models for 10 epochs using learning rate of 0.0005, decayed by 0.9 after every epoch, and minibatch size of
512. Runtime: 30 LC steps with the final fine-tuning finishes in 32 hours on NVIDIA Titan V GPU.
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λ× 10−4 # params,
MFLOPs

Eval, % ρFLOPs ρstorage×106 top-1 top-5

R 62.3 1139 42.29 19.54 1.00 1.00

0.05 40.7 436 41.56 19.15 2.61 1.53
0.15 18.2 263 42.63 19.95 4.33 3.43

sc
h
em

e
1

0.17 14.2 240 42.83 19.93 4.75 4.39

0.05 40.5 324 41.46 19.14 3.52 1.53
0.10 25.2 236 41.81 19.40 4.83 2.47

sc
h
em

e
2

0.15 18.1 190 42.07 19.54 5.99 3.45
0.20 12.4 151 42.69 19.83 7.57 5.01

Table 8: Rank Selection on AlexNet with different λ values using the low-rank parametrization schemes 1
and 2 (after fine-tuning). We report: top-1/5 errors on the validation set Eval; resulting number of MFLOPs
and parameters; FLOPs reduction ratio ρFLOPs and storage reduction ratio ρstorage.

MFLOPs top-1 top-5 ρFLOPs

Caffe-AlexNet [6] 724 42.70 19.80 1.00

Kim et al. [8], Tucker 272 n/a 21.67 2.66
Tai et al. [19], scheme 2 185 n/a 20.34 3.90
Wen et al. [20], scheme 1 269 n/a 20.14 2.69
Kim et al. [7], scheme 2 272 43.40 20.10 2.66

Yu et al. [23], filter pruning 232 44.13 n/a 3.12
Li et al. [13], filter pruning 334 43.17 n/a 2.16
Ding et al. [1], filter pruning 492 43.83 20.47 1.47

our, scheme 1, λ = 0.17 240 42.83 19.93 3.01
our, scheme 2, λ = 0.20 151 42.69 19.83 4.79

Table 9: Comparison of our low-rank AlexNet-s to results in literature obtained by decomposition methods
(including low-rank) and structured pruning. Reduction of FLOPs (ρFLOPs) is given wrt Caffe-AlexNet, we
can achieve 151MFLOPs (×4.79 reduction wrt Caffe-AlexNet) with better error.
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4.6 Discussion and comparison

In this section we provide a comprehensive evaluation of our algorithm to the best results in the literature
on speeding up the neural networks on the CIFAR10 dataset (for the ImageNet comparison, please refer
to section 4.5). We have to note that most of the approaches in literature relies on structured pruning,
with only a small fraction being low-rank networks. We will demonstrate that our approach does not only
outperform other low-rank approaches but generally competitive with pruning.

Our algorithm vs baselines To understand why our algorithm achieves better results, we plot selected
ranks and FLOPs for us, and two baselines, for the final architectures that have about the same FLOPs
reduction on NIN. Our network achieves ×2.08, baseline 1 — ×2.21, and baseline 2 — ×2.03 reduction in
FLOPs while in terms of accuracy the results are 91.14%, 90.13%, and 90.49% respectively (Figure 10).

With multiple quantities of interest comparing the performance of compressed neural networks is rather
tricky. The most obvious way is to report a single compression ratio in terms of the number of parameters,
or speed-up. Having only one number does not necessarily reflect other important metrics, e.g., compression
of the parameters does not correspond to a faster inference (with fewer FLOPs), and generally, not as
interesting as the interplay between compressed model’s performance, compression and speed-up ratios. We
should also note that the compression ratios (of any kind) on its own are not representative as they can be
easily inflated by compressing a larger (overparametrized) model in the first place. Therefore, to visualize
and understand this tradeoff better, we decided to report achieved FLOPs, model size and test accuracy in
single Fig. 13.

Fig. 13 depicts all our CIFAR10 results obtained via low-rank compression (as connected circles), other’s
results obtained via low-rank compression as labeled circles [11, 20, 21], and most importantly puts low-rank
compression in perspective with other reported results for faster inference, i.e., structured filter pruning
[5, 12, 22, 23, 25], as squares (to indicate apples to oranges comparison). Ideally, we would like to have
models on the left-bottom corner of this plot, where both FLOPs and error are minimal. Results trace a
pareto curve, which is mostly formed by our low-rank compressed ResNet-s and VGG16. We make a few
observations: 1) low-rank models obtained via our algorithm are comparable and often considerably better
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Figure 10: Comparison of selected ranks and corresponding FLOPs achieved by our algorithm and the
baselines on NIN-CIFAR10. The resulting FLOPs reduction for our method—×2.08, baseline 1 — ×2.21,
baseline 2—×2.03; with corresponding accuracies of 91.14%, 90.13%, and 90.49%. As you can see, for the
same amount of reduction in FLOPs, our results has more than 0.65% of margin. More interestingly, you
can see that most of the selected ranks of both baselines do not agree with our selected ranks, and the only
agreeing one is in the last 9th layer.
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than other low-rank compression and structured pruning results 2) it is often beneficial in terms of error-
FLOPs tradeoff to train a larger model and then compress it, e.g., one of the low-rank VGG16-s achieve
6.11% error with 107MFLOPs, while reference ResNet110 has 6.02% error with 252MFLOPs.

In Fig. 11, Fig. 12, and Fig. 14 we produce a single plot of FLOPs vs test accuracy for each of the VGG,
ResNet and NIN networks. The size of every circle is proportional to the achieved number of parameters. In
these plots, the most ideal networks are small circles located in the left bottom position. In order to put our
results in perspective, we plot alongside our results, the results from literature. If there are existing methods
that use low-rank decomposition we plot them using circles, and everything else as squares. (To illustrate
apples to oranges comparison). We can see that low rank models achieved using our method outperforms
all other low-rank based methods reported in literature and competitive with structured pruning methods,
outperforming them on certain occasions.
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Figure 11: Depiction of an interplay between model FLOPs, number of parameters, λ values and resulting
test error for LC Models, as in Table 3. Each blue circle corresponds to a particular obtained model; the
number of its parameters is the area of the circle; the label inside is the value of λ it was trained with (the
multiplicative factor of ×10−4 omitted). We show the interplay for VGG16 (on the left) and VGG19 (on the
right) trained on CIFAR10, R – the reference model. Other colored circles are the comparison points from
the literature, in this case, obtained via filter pruning.
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ResNet20 on CIFAR10 ResNet32 on CIFAR10
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Figure 12: Depiction of an interplay between model FLOPs, number of parameters, λ values and resulting
test error for LC Models, as in Table 4. Each blue circle corresponds to a particular compressed model via
LC; the number of its parameters is the area of the circle; the label inside is the value of λ it was trained
with (the multiplicative factor of ×10−3 omitted). For comparison, we show results of other compression
methods via circles if they are using low rank, and via squares if it is something else (e.g., pruning).
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over different λ values for a given net span a curve, shown as connected circles•—•, which starts on the
lower right at the reference R (λ = 0) and then moves left and up. Other published results using low-rank
compression are shown as isolated circles labeled with a citation. Other published results involving struc-
tured filter pruning for faster inference are shown as isolated squares labeled with a citation. Each color
corresponds to a different reference net. The area of a circle or square is proportional to the number of
parameters in the corresponding compressed model. Ideal models are small balls on the left-bottom, where
both error and FLOPs are the smallest.
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of its parameters is the area of the circle, label inside is the value of λ it was trained with (the multiplicative
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network err # params ρstorage MFLOPs ρFLOPs

R ResNet20 8.35% 269722 1.00 40.55 1.00
pruning, [22], A 9.09% 176596 1.52 28.16 1.44
pruning, [22], B 11.20% 89 344 3.01 16.75 2.42
low-rank, [20] 9.57% 31 352 8.60 14.15 2.87
low-rank, [21] 9.50% 100000 2.69 18.68 2.17
our, λ = 1 · 10−3 8.76% 175137 1.54 26.38 1.54
our, λ = 8 · 10−3 9.87% 85 351 3.16 13.47 3.01

R ResNet32 7.14% 464144 1.00 68.86 1.00
low-rank, [21] 8.60% 160000 2.90 31.30 2.20
our, λ = 4 · 10−3 8.37% 176480 2.63 26.55 2.59

R ResNet56 6.58% 853008 1.00 125.49 1.00
pruning, [12] 6.94% 736145 1.15 90.85 1.38
pruning, [5] 8.20% 590143 1.45 62.74 2.00
DCP pruning, [25] 6.51% 432998 1.97 63.05 1.99
DCP-Adapt pruning, [25] 6.19% 253118 3.97 66.39 1.89
our, λ = 1 · 10−3 7.18% 451326 1.89 63.35 1.98

R ResNet110 6.02% 1 727952 1.00 252.88 1.00
pruning, [12], A 6.45% 1 688209 1.15 212.67 1.18
pruning, [12], B 6.70% 1 168095 1.15 155.27 1.62
pruning, [23] 6.61% 980612 1.97 142.17 1.77
our, λ = 4 · 10−3 6.72% 502311 3.44 71.78 3.52

Table 10: Comparison of results based on low-rank architecture learned using our method and others on
ResNets.
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network err # params ρstorage MFLOPs ρFLOPs

R VGG16 6.57% 14.9M 1.00 313 1.00
our, λ = 2 · 10−4 6.59% 2.0M 7.48 68 4.59
filter pruning, [12] 6.60% 5.4M 2.77 207 1.51

R VGG19 6.46% 20.2M 1.00 398 1.00
our, λ = 1.5 · 10−4 6.38% 2.47M 8.21 88 4.51
filter pruning, [15] 6.20% 2.30M 8.69 196 2.03
DCP-adapt, [25] 5.43% 1.29M 15.58 140 2.86
DCP, [25] 5.84% 10.5M 1.92 195 2.00

Table 11: Comparison of results of low-rank architecture learned using our method on VGG-s and the recent
VGG architectures obtained via filter pruning on the CIFAR10.
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