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Appendices

A. Parametrizing the hierarchy

Our hierarchical generic segmentation algorithm uses an
iterative merging process that creates a segmentation hier-
archy, starting from an initial oversegmentation. This hi-
erarchy can be represented efficiently by a UCM [1]. The
UCM values should be monotonic with the iteration num-
ber. This is indeed the case in [2, 8], for example, where
the edge confidence, averaged on the contour segments, is
used. However, in our algorithm, the dissimilarity values
are not necessarily monotonically increasing with the iter-
ation because they are based on a complex set of features
that additionally relies on random samples; see Fig. 1.

Figure 1: Example of original pair dissimilarities and their
monotonized version used to parameterize the hierarchy.

In principle, we could have chosen any monotonic se-
quence that increases with the iterative process, and even
the iteration number itself [4]. The value of the iteration
number, however, is not related to the segmentation qual-
ity uniformly with respect to the set of diverse images.
Therefore, uniform thresholding cannot be applied. The
Pair Dissim, on the other hand, has such a meaning re-
garding the resulting segmentation quality: the probability
that the segments belong to different objects. Therefore, we
therefore choose a monotonic function that approximates it,
and assign a monotonized value for every segmentation. To
that end, after performing all the merge iterations and sav-
ing all the Pair Dissim values, we smooth the sequence of
these values, and then iteratively remove every value that
is smaller than the previous unremoved value. This cre-

ates a monotonically non-decreasing, but partial sequence,
which we complete through linear interpolation. The initial
smoothing helps to prevent bias to high values. See an ex-
ample in Fig. 1. Note that we approximate the Pair Dissim
and not the full augmented pair dissimilarity because the
latter is not used in all iterations and because, as a combina-
tion with Sil Score, it loses its probabilistic interpretation.

B. Segment filtering and sampling

During the pixel-wise representation process used in our
work, the output is not completely uniform over each pixel
in an image segment, and outliers exist due to small struc-
tures and proximity to different objects. Therefore, before
using the representation vectors we filter them using the Iso-
lation Forest algorithm [7]. Isolation Forest works by creat-
ing several trees from the training data. On each tree, it iter-
atively splits the training data over a random feature using a
random value until a single data point remains on each leaf.
Intuitively, compared to inliers, outliers require, on average,
less splits to reach a leaf and thus will be reached earlier in
the forest. Remarkably, the Isolation Forest algorithm de-
tects outliers even with significant undersampling and yet is
efficient both in training and prediction.

This filtering is applied to all segments, whether coming
from the initial oversegmentation or from a merging step.
For large segments (300 pixels or more), we also sample
the remaining pixels to reduce the cost of calculating the
pixel pair distances. We show in Appendix C that both the
filtering and sampling improve our results. Interestingly,
filtering achieves better results when done for merged seg-
ment pairs rather than only for the initial oversegmentation.

C. Comparing different choices for the merg-
ing function

We experimented with our hierarchical generic segmen-
tation algorithm over several versions of the merging func-
tion components. The comparisons are done using the (OIS)
F-score for objects and parts on BSDS500 (validation) [9]
with [8] for edge detection.



C.1. Re-ranking

Recall that re-ranking starts when the number of seg-
ments is #s or lower, and is carried out for T candidates
(in each iteration). Table 1 describes the results with and
without the re-ranking, and with different #s and T values.

Re-ranking noticeably improves F score results. We can
also see that starting the process earlier or using more seg-
ment pairs did not improve the results.

C.2. Filtering and sampling

We examine the effect of filtering and sampling. We test
sampling (denoted as #P ) of 300 and 3000 pixels per seg-
ment (larger sampling sizes are unfeasible) as well as filter-
ing vs. no filtering. Table 2 describes the results.

Both fewer pixel samples and filtering improve the accu-
racy, by reducing the chance of selecting pixels that are not
typical to the segment.

C.3. Choice of classifiers

We have trained three alternate classifiers that determine
the pair dissimilarity: the first is logistic regression with an
L1 penalty, without altering the class weights. Training was
performed under liblinear [5] with a C value of 1. The sec-
ond is a multi-layered perceptron with 5 hidden layers of
size 96 each. We used the Adam solver [6] with an initial
learning rate of 0.01 and logistic activation. The third is
a Random Forest Regressor [3] with 20 estimators, a max
depth of 15, minimum of 400 samples per leaf and a mini-
mum split of 0.05.

We optimized the parameters of each classifier and used
its probability prediction output as the pair dissimilarity (for
the Random Forest, we used the average of samples on a
leaf). Table 3 describes the results. The best results were
obtained with logistic regression and a multi-layer percep-
tron with the outlined parameters.
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No
re-ranking

#s = 120
T = 4

#s = 240
T = 4

#s = 120
T = 20

Fop 0.509 0.512 0.511 0.511

Table 1: Comparison of different re-ranking parameters.

#P = 300
& Filter

#P = 3000
& Filter

#P = 300
& No filter

#P = 3000
& No Filter

Fop 0.512 0.508 0.510 0.506

Table 2: Comparison of different filtering and sampling pa-
rameters.

LR MLP RF
Fop 0.511 0.512 0.48

Table 3: Comparison of different choice of classifiers.
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