Supplementary Material for:
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Figure 1: Features learned in the first convolutional layer of
an AlexNet trained to recognize image transformations on
ImageNet with our method.

1. Implementation Details for Limited Context
Inpainting

We provide additional details regarding the implementa-
tion of our Limited Context Inpainting (LCI). The network
architecture of the inpainter network F' is depicted in Table
[2] We used a standard autoencoder architecture with leaky-
ReLU activations [11] and batch normalization [7]. The ar-
chitecture of the patch discriminator D is shown in Table
[3l We use spectral normalization in all the layers of the
discriminator. We feed a pair of real or generated patches as
input to the discriminator by concatenating them along the
channel dimension. We found this to result in more diverse
patch inpaintings and more stable training. This technique
was also proposed by [10]].

2. Details of the Evaluation Protocol

For the linear classifier experiments on ImageNet and
Places we followed the protocol established by and
train linear classifiers on fixed features extracted at different
layers of the network. Feature maps are spatially resized
via average-pooling such that they contain approximately
9K units. Training parameters of the linear classifiers are
identical to the prior SotA [3]]. Concretely, linear classifiers
are trained for 65 epochs using SGD+Momentum with an
initial learning rate of 0.1 which we decay to 0.01 after 5
epochs, 0.002 after 25 epochs and finally 0.0004 after 45
epochs.

Table 1: Comparison of test-set accuracy on STL-10 with
other published results. Note that the methods do not all
use the same network architecture.

Method Accuracy
Dosovitskiy et al. 74.2%
Dundar et al. et al. [2]] 74.1%
Hjelm er al. [5] 77.0%
Huang et al. [6] 76.8%
Jenni & Favaro [§]] 80.1%
Tietal. [9] 88.8%
Oyallon ef al. 87.6%
Swersky et al. [14] 70.1%
Zhao et al. [16] 74.3%
Ours 91.8%

3. ResNet Experiments on STL-10

We performed additional experiments with a more mod-
ern network architecture on STL-10. We followed the setup
of [9] and trained a ResNet-34 [4] for 200 epochs on the
100K unlabelled training images of STL-10. We then fine-
tuned the network for 300 epochs on the 5K labelled train-
ing images and evaluate on the 8K test images. The train-
ing parameters are the same as in our experiments with
AlexNet. We used data augmentation and multi-crop evalu-
ation similar to [9]]. Results and a comparison to prior work
is shown in Table [Tl

4. Additional Qualitative Results

We visualize the filters learned in the first convolutional
layer of an AlexNet after our self-supervised pre-training in
Figure[I] We provide additional results for nearest neighbor
retrieval on the ImageNet validation set in Figure [2| Addi-
tionally, we show some examples of LCI transformed im-
ages in Figure [3] Note that although the patch-border is
in some cases visible, the transformation classifier can not
rely on solely detecting these borders, since the examples
with autoencoded patches will have similar processing foot-
prints.
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Figure 2: Additional results for nearest neighbor retrieval. Figure 3: We show examples of images transformed with
The left-most column shows the query image. Odd rows: Limited Context Inpainting (LCI). Odd rows: The original
Retrievals with our features. Even rows: Retrievals with training images with the patch used for LCI indicated in red.

features learned using ImageNet labels. Even rows: The images after applying LCI.



Table 2: Network architecture of our inpainter network F
used for LCI. The layers in parenthesis are included for pre-
training on ImageNet and excluded for the experiments on
STL-10 and CelebA.

Inpainter Network F

conv 3 X 3 stride=1 1leaky—-ReLU 48
conv 4 x 4 stride=2 BN 1leaky—-ReLU 96
conv 4 X 4 stride=2 BN leaky—-ReLU 192

(conv 4 x 4 stride=2 BN leaky—-ReLU 384)
(deconv 4 x 4 stride=2 BN leaky—-ReLU 192)
deconv 4 x 4 stride=2 BN 1leaky—-ReLU 96
deconv 4 x 4 stride=2 BN 1leaky-ReLU 48
deconv 3 x 3 stride=1 tanh 3

Table 3: Network architecture of our patch discriminator
network D used for LCI. The layers in parenthesis are in-
cluded for pre-training on ImageNet and excluded for the
experiments on STL-10 and CelebA.

Patch Discriminator D

conv 3 x 3 stride=1 SN 1leaky—ReLU 64
conv 4 x 4 stride=2 SN leaky-ReLU 64
conv 3 x 3 stride=1 SN leaky-ReLU 128
conv 4 x 4 stride=2 SN leaky—-ReLU 128
conv 3 x 3 stride=1 SN leaky—-ReLU 256
(conv 4 x 4 stride=2 SN leaky—ReLU 256 )
(conv 3 x 3 stride=1 SN leaky-ReLU 512)
Global 2D Average Pooling
fully-connected SN linear 1
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