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The supplementary materials provide additional analyses
and results on the proposed Immersive Question-directed
Visual Attention (IQVA) dataset, together with more de-
tails on the model design. Specifically, we 1) present ad-
ditional examples of correct and incorrect attention pat-
terns, and video illustrations for all the examples; 2) pro-
vide additional results on the effects of different hyper-
parameters and more qualitative examples; and 3) elabo-
rate the design of our Map Aggregation module for general
360° video saliency prediction, and the modifications of ex-
isting bottom-up saliency models to take into account task
information for a fair comparison.

1. Additional Data Analyses and Supplemen-
tary Video

In this section, we extend the analyses of the human fix-
ation data and its influence in answer correctness with ad-
ditional examples. In Figure 1, we show the key frames
in which the correct attention was on the important visual
cues. At the same time, the incorrect attention either missed
the cues or did not last for enough time to understand the
observed information.
Missing important cues. Figures 1(a)-(d) show exam-
ples of incorrect attention missing important cues that an-
swer the questions. Figures 1(a)-(c) are the same examples
shown in the main paper. Figure 1(d) shows that the white
backpack is not attended by people who answer incorrectly.
Looking, but not seeing. Figures 1(e)-(f) show examples
of incorrect attention looking at the visual cues but failed
to spend enough time to understand them. Figure 1(e) is
the same example shown in the main paper, and Figure 1(f)
shows that people who answered incorrectly do not see the
black bowl, even though they also look at the white table at
some point.
Wrong timing. Figures 1(g)-(h) show examples of incor-
rect attention missing important moments of the scenes.
Figure 1(g) is the same example shown in the main pa-
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per. Figure 1(h) shows that people who answered incor-
rectly miss the train driver when the train passes by.

For more details, please refer to the supplementary
video.

2. Additional Results
2.1. Effects of Hyperparameters

The learning objective presented in the main paper con-
sists of two hyperparameters, i.e. β and γ. They balance
the losses for independent attention maps and their differ-
ence, and determine the contributions of the two terms in
our Fine-grained Difference (FGD) loss. We empirically
set β = 0.5 and γ = 2 based on ablation studies. Table 1
reports the model performances under different settings.

We first investigate the effects of β that balances the pro-
posed FGD loss, and the losses on each independent atten-
tion map, with γ fixed to 2. On the one hand, with a small
β (i.e. β = 0.1 and β = 0.3) that lessens the contribution
of the FGD loss, the models have difficulties differentiating
the two attention maps and tend to provide sub-optimal re-
sults. On the other hand, assigning a large value to β (i.e.
β = 0.8 and β = 1) overemphasizes the difference between
the attention maps, resulting in difficulties in fitting each in-
dependent attention map. Setting β = 0.5 leads to a reason-
able trade-off between learning independent attention maps
and their difference, and produces the best results.

Next, we study the effects of γ that determines the con-
tributions of different terms in the FGD loss. According
to the results, a sub-optimal value can result in difficulties
separating the two attention maps (i.e. γ = 3 and γ = 4)
or fitting to the ground truth difference (i.e. γ = 0.5 and
γ = 1). On the contrary, γ = 2 provides a good balance
between the two terms and leads to the best results.

2.2. Qualitative Examples

Additional qualitative results in Figure 2 further demon-
strate the effectiveness of our model for the correctness-
aware attention prediction. Similar to the qualitative results
shown in the main paper, we can see that existing models
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(a) Q: How many people are there? A: 4. (b) Q: What is the man driving? A: Truck.

(c) Q: Is there a flag in front of the police? A: Yes. (d) Q: What color is the backpack? A: White.

(e) Q: How many animals are on the ground? A: 3. (f) Q: What on top of a white table is black? A: Bowl.

(g) Q: How many people are there? A: 2. (h) Q: Who is wearing sunglasses? A: Man.

Figure 1: Correct (row 1) and incorrect (row 2) attentions at a key moment when the correct attention was paid to the most
important visual cues that lead to correct answers. Left: equirectangular fixation maps are overlaid as contours. Right: the
most fixated regions shown in the perspective view.



Correct Incorrect
CC NSS KLD SIM sAUC CC NSS KLD SIM sAUC

β = 0.1 0.431 2.263 1.435 0.359 0.480 0.417 2.228 1.528 0.345 0.474
β = 0.3 0.431 2.239 1.457 0.361 0.461 0.411 2.155 1.565 0.337 0.457
β = 0.5 0.441 2.375 1.429 0.371 0.462 0.424 2.267 1.524 0.345 0.469
β = 0.8 0.416 2.243 1.533 0.359 0.438 0.413 2.150 1.591 0.338 0.467
β = 1 0.386 2.201 1.673 0.351 0.406 0.369 1.769 1.652 0.324 0.409
γ = 0.5 0.432 2.294 1.463 0.364 0.455 0.408 2.197 1.596 0.342 0.435
γ = 1 0.437 2.257 1.448 0.364 0.465 0.420 2.134 1.536 0.338 0.474
γ = 2 0.441 2.375 1.429 0.371 0.462 0.424 2.267 1.524 0.345 0.469
γ = 3 0.437 2.237 1.433 0.355 0.501 0.417 2.179 1.533 0.330 0.502
γ = 4 0.425 2.108 1.472 0.350 0.472 0.412 2.092 1.552 0.332 0.469

Table 1: Quantitative comparisons under different settings of hyperparameters β and γ. Best results are highlighted in bold.

Figure 2: Additional qualitative comparisons of the predicted correct (row 1) and incorrect (row 2) attention maps.

lack the capability of capturing the key differences between
the correct and incorrect attentions. They either fail to lo-
cate the regions of interest as well as distracting objects in
the corresponding attention maps (i.e. example (b) and (c)
for SALNet), or predict identical maps for two attentions
that have significant differences (i.e. in most of the cases).
In comparison, our model is capable of identifying the key
differences between two attentions and providing better re-
sults. Specifically, in all of the examples, our model suc-
cessfully distinguishes the regions of interest that lead to the
correct answers (i.e. the man in a yellow top, the woman,
and the stroller in the back) from the distracting objects (i.e.
a group of people not wearing a yellow top, a mirror-like
object near the woman, and the woman with a baby).

The aforementioned results highlight the necessity of
learning the differences between correct and incorrect atten-

tions, and further validate the effectiveness of the proposed
model.

3. Additional Modeling Details

3.1. Map Aggregation Module

In addition to the correctness-aware attention predic-
tion, we also carry out experiments on general 360◦ video
saliency prediction. Though our model proposed in the
main paper is primarily designed for correctness-aware at-
tention prediction, it can be seamlessly adapted to general
saliency prediction by introducing a Map Aggregation mod-
ule. The Map Aggregation module takes the correct and in-
correct attention maps predicted by our model as inputs, and
learns adaptive weights for combining the two maps, based
on both the question and visual information.



More specifically, given the language features u and the
visual semantics recalled from the semantic working mem-
ory σt, we first compute the adaptive weights λ for the two
attention maps as follows:

λ =Wλ(Wu′u+Wσ[σ
+
t , σ

−
t ]) (1)

where [σ+
t , σ

−
t ] is the concatenation of semantics for cor-

rect and incorrect attentions, Wu′ and Wσ are trainable
weights for the corresponding factors, Wλ is used for com-
puting the adaptive weights that integrate the two attention
maps. Then, the final saliency map MSal is computed as
a linear combination of the correct and incorrect attention
maps Mt = [M+

t ,M
−
t ] based on the adaptive weights as

MSal = λMt. Similar to [2], the saliency map is normal-
ized by dividing by its maximum.

3.2. Modifications of Existing Bottom-up Models

Existing models [3, 4, 5, 6] focus on predicting bottom-
up saliency maps without taking into account the influences
of top-down factors, e.g. questions in the proposed dataset.
For a fair comparison with our model, we slightly mod-
ify them to incorporate the question features. Specifically,
the question information is processed with the same Lan-
guage Encoder used in our model, and integrated with the
bottom-up visual features via a standard element-wise ad-
dition. The features from different modalities, i.e. visual
features and language features, are combined before the last
layer to predict the final correctness-aware attention maps.
Note that since the Spherical U-Net [6] requires extensive
computational resources before incorporating the question
information (over 12 GB GPU memory for processing a
single image), for better efficiency and generalization, we
replace their spherical convolution layers with the ones pro-
posed in [1].

References
[1] Benjamin Coors, Alexandru Paul Condurache, and Andreas

Geiger. SphereNet: Learning Spherical Representations for
Detection and Classification in Omnidirectional Images. In
ECCV, 2018. 4

[2] Marcella Cornia, Lorenzo Baraldi, Giuseppe Serra, and Rita
Cucchiara. Predicting Human Eye Fixations via an LSTM-
based Saliency Attentive Model. TIP, 2018. 4

[3] Xun Huang, Chengyao Shen, Xavier Boix, and Qi Zhao. SAL-
ICON: Reducing the Semantic Gap in Saliency Prediction by
Adapting Deep Neural Networks. In ICCV, 2015. 4

[4] Junting Pan, Elisa Sayrol, Xavier Giro-i-Nieto, Kevin
McGuinness, and Noel E. O’Connor. Shallow and Deep Con-
volutional Networks for Saliency Prediction. In CVPR, 2016.
4

[5] W. Wang, J. Shen, J. Xie, M. Cheng, H. Ling, and A. Borji.
Revisiting Video Saliency Prediction in the Deep Learning
Era. TPAMI, 2019. 4

[6] Ziheng Zhang, Yanyu Xu, Jingyi Yu, and Shenghua Gao.
Saliency Detection in 360◦ Videos. In ECCV, 2018. 4


