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Detailed Searched Architectures of SPNet Series
We describe our SPNet series backbone networks with 224× 224 input size for ImageNet in Figure 1. The network starts

from a stem that consists of two strided 3× 3 convolutions decreasing the resolution to 1
4 following [4][5].

Layer name Output size 𝐒𝐏𝐍𝐞𝐭𝑽𝑶𝑪(BB) 𝐒𝐏𝐍𝐞𝐭𝑬𝑪𝑷 𝐒𝐏𝐍𝐞𝐭𝑩𝑫𝑫 𝐒𝐏𝐍𝐞𝐭𝑪𝑶𝑪𝑶 𝐒𝐏𝐍𝐞𝐭𝑪𝑶𝑪𝑶(𝐗𝐁) ResNet101

Conv1 112 × 112 3 × 3, 32, stride 2 7 × 7, 64, stride 2

Stage1 56 × 56

3 × 3, 64, stride 2 2 × 2, Max-pool

3 × 3, 64
3 × 3, 64

× 2
1 × 1, 64
3 × 3, 64
1 × 1, 256

× 3
1 × 1, 64
3 × 3, 64
1 × 1, 256

× 10
1 × 1, 64
3 × 3, 64
1 × 1, 256

× 4
1 × 1, 128
3 × 3, 128
1 × 1, 256

× 4
1 × 1, 64
3 × 3, 64
1 × 1, 256

× 3

3 × 3, 128
3 × 3, 128

× 1
1 × 1, 128
3 × 3, 128
1 × 1, 512

× 5
1 × 1, 128
3 × 3, 128
1 × 1, 512

× 1
1 × 1, 128
3 × 3, 128
1 × 1, 512

× 2

Stage2 28 × 28
3 × 3, 128
3 × 3, 128

× 4
1 × 1, 256
3 × 3, 256
1 × 1, 1024

× 5
1 × 1, 128
3 × 3, 128
1 × 1, 512

× 17

1 × 1, 128
3 × 3, 128
1 × 1, 512

× 8
1 × 1, 256
3 × 3, 256
1 × 1, 512

× 5
1 × 1, 128
3 × 3, 128
1 × 1, 512

× 4
1 × 1, 256
3 × 3, 256
1 × 1, 1024

× 1

Stage3 14 × 14
3 × 3, 256
3 × 3, 256

× 10

1 × 1, 256
3 × 3, 256
1 × 1, 1024

× 2
1 × 1, 256
3 × 3, 256
1 × 1, 1024

× 18
1 × 1, 256
3 × 3, 256
1 × 1, 1024

× 2
1 × 1, 512
3 × 3, 512
1 × 1, 1024

× 25
1 × 1, 256
3 × 3, 256
1 × 1, 1024

× 23
1 × 1, 512
3 × 3, 512
1 × 1, 2048

× 1

Stage4 7 × 7
3 × 3, 512
3 × 3, 512

× 4
1 × 1, 512
3 × 3, 512
1 × 1, 2048

× 4
1 × 1, 512
3 × 3, 512
1 × 1, 2048

× 7

1 × 1, 256
3 × 3, 256
1 × 1, 1024

× 17
1 × 1, 1024
3 × 3, 1024
1 × 1, 2048

× 3
1 × 1, 512
3 × 3, 512
1 × 1, 2048

× 3
1 × 1, 512
3 × 3, 512
1 × 1, 2048

× 1

Stage5 4 × 4
3 × 3, 512
3 × 3, 512

× 1
1 × 1, 512
3 × 3, 512
1 × 1, 2048

× 4
1 × 1, 512
3 × 3, 512
1 × 1, 2048

× 3
1 × 1, 512
3 × 3, 512
1 × 1, 2048

× 12
1 × 1, 1024
3 × 3, 1024
1 × 1, 2048

× 1 -

Stage6 2 × 2
3 × 3, 512
3 × 3, 512

× 4 -
1 × 1, 512
3 × 3, 512
1 × 1, 2048

× 1
1 × 1, 512
3 × 3, 512
1 × 1, 2048

× 1 - -

Block Type basic block bottleneck block bottleneck block bottleneck block ResNext block bottleneck block

FLOPS (GB) 5.5 14.1 13.8 9.5 8.8 4.1

Top-1 Error (%) 23.7 20.3 20.0 20.9 20.0 22.8

Figure 1. Searched Architectures of SPNet. Detailed kernel size and output channel of blocks are shown in brackets, with the numbers of
blocks stacked. Downsampling is performed by Stage 2-6 with a stride of 2.
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Structrue of Blocks
Specific structure in each type of block is shown in Figure 2. Left: Basic Block with 2 convolution layers with the same

input and output channel D. Middle: Bottleneck Block with 3 convolution layers following [3]. Right: A block of ResNext
with groups = 32, width = 4, like in [8]. A layer is shown as (kernel size, # out channels).
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Figure 2. Illustration of specific structure in each type of block.

Detailed Comparison of Different Detector on COCO
We attempt to combine searched SPNetCOCO with two different detectors, Faster RCNN with FPN [6] and Cascade

RCNN [2] as in Table 1. The input size is 800× 1333 and the training epoch is 24. It shows SPNetCOCO-BNB with FPN [6]
detector improves 1.7% mAP to ResNext101 with faster inference speed. Replace FPN head with the cascade heads [2] can
boost performance to 45.6 mAP with reducing inference speed by 11%. Furthermore, SPNetCOCO-XB with Cascade RCNN
can reach 47.4% mAP.

% Method Backbone AP AP50 APS Time (fps)

COCO

FPN [6]

ResNet101 [3] 39.4 60.6 22.1 11.9
ResNext101 [8] 40.1 62.0 23.4 10.3

SPNetCOCO-BNB 41.8 63.4 25.8 11.5
SPNetCOCO-XB 44.0 65.0 26.6 6.0

Cascade RCNN [2]

ResNet101 [3] 42.8 62.1 23.7 10.2
ResNext101 [8] 44.5 63.3 26.1 6.7

SPNetCOCO-BNB 45.6 64.3 28.4 10.2
SPNetCOCO-XB 47.4 65.7 29.6 5.6

Table 1. Comparison of mean Average Precision and inference time of ResNet/ResNext with different detection head. Inference time is
tested on one V100 GPU. BNB and XB indicate bottleneck block and ResNext block respectively. The proposed SPNet has consistent
improvement with stronger detection head.

Generalization ability of the searched architecture
To evaluate the domain transferability of our SP-NAS, we transfer the searched architecture to other datasets, as shown in

Table 2. It can be found that directly searching on the target dataset performs best while transferring from other datasets will
have a small performance drop. The better transferability can be found between similar datasets such as BDD [9] and ECP
[1] (both street scenes).

Arch Searched From COCO mAP BDD mAP ECP LAMR
COCO [7] 41.8 37.4−1.3 0.060+0.006

BDD [9] 40.7−1.1 38.7 0.059+0.005

ECP [1] 40.6−1.2 37.8−0.9 0.054
Table 2. Generalization ability of SP-NAS. We transfer the searched architecture with FPN from COCO, BDD and ECP to other datasets
(smaller LAMR is better).

Qualitative Results.
Qualitative comparisons on EuroCity Person (ECP) [1] dataset between ResNet101 and our method SPNetECP can be

found in Figure 3. Both backbone networks are based on the Faster RCNN with FPN [6] detector. For the comparisons, our
SPNetECP considers more computation allocation on former stages for locating the tiny-size person and additional stage for
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distinguishing objects with occlusion and ambiguity, while ResNet101 performs more miss prediction and false positives.
The network searched by our SP-NAS is more accurate than the baseline ResNet series due to the data-oriented computation
allocation.
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Figure 3. Qualitative results comparison on ECP between ResNet101 and SPNetECP . Our method can detect more tiny-size and serve
occlusion pedestrians.
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Figure 4. Qualitative results comparison on ECP between ResNet101 and SPNetECP . Our method is more accurate than the baseline
ResNet101 due to the data-oriented computation allocation.
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Figure 5. Qualitative results comparison on ECP between ResNet101 and SPNetECP .
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