Supplementary Material

A. KITTI Improved Ground Truth

The evaluation method that was introduced by Eigen et
al. [2] uses reprojected LiDAR points to create the ground
truth depth images. However, the reprojections do not han-
dle occlusions, non-rigid motion or motion from the cam-
era. Uhrig et al. [12] introduced an improved set of high
quality ground truth depth maps for the KITTI dataset.
These high quality images are instead reprojected using 5
consecutive LiDAR frames and uses the stereo images for
better handling of occlusions. To obviate the need of re-
training, as with other work [5], we use a modified Eigen [2]
test split on the images that overlap between these datasets.
This results in 652 (93%) of the 697 original test frames
being retained. We use the same evaluation strategy and
metrics as discussed in the Experiments section of the main
paper. The results of this analysis can be found in Table

B. Network Architecture

For all experiments, except where noted, we use
a ResNet-101 encoder model with pretrained ImageNet
weights. This model has been modified to use
atrous/dilation convolutions [!] in the final two residual
blocks. We use rectified linear activation (ReLU) in the en-
coding model and the Exponential Linear Unit (ELU) in the
decoder. Skip connections are applied to the two intermedi-
ate outputs between the encoder and decoder. As the inter-
nal resolution is much larger than that of the ResNet-18 used
by Monodepth2 [5] (3 scale compared with 55 scale), a skip
connection is not required for the smallest output resolution.
For the pose model, we use the same ResNet-18 and pose
decoder defined by Monodepth2 [5]. The full depth network
architecture can be found in Table

C. Additional Qualitative Results

In Figure |, we present additional qualitative compar-
isons to multiple previous works. Our method produces
sharper predictions for thin structures and complex shapes
such as people. In Figure 2, we show the uncertainty es-
timates for multiple images. As can been seen in the fig-
ure, areas of low contrast (row 2) correspond with areas of
high uncertainty. Moreover, high uncertainty can also be
observed in areas of unknown texture (row 7, right hand
side). This area of the input image also demonstrates is-
sues with texture copy artefacts [5] in the predicted depth.
Additional attention maps are displayed in Figure 3. The at-
tention maps were selected at random from the 512 output
channels in the context module.

Depth Network (Number of Parameters: 51.34M)

layer k|s |ch dilation | res | input activation
convl 31164 2 1 image ReLU
conv2 31164 1 2 convl ReLU
conv3 301128 1 2 conv2 ReLU
maxpool | 3 | 2| 128 1 2 conv2 ReLU
resl 3111256 1 4 conv3 ReLU
res2 3121512 1 8 resl ReLU
res3 3 01]1024 |2 8 res2 ReLU
res4 31112048 | 4 8 res4 ReLU
context 3117512 1 8 res4 Self-Attn
ddv4 301128 1 8 context Linear
disp4 3111 1 8 ddvl softmax
upconv3 | 3 | 1 | 64 1 8 ddv4 ELU
deconv3 | 3 | 1 | 64 1 4 upconv3T, resl ELU
ddv3 301128 1 4 deconv3 Linear
disp3 3111 1 4 ddv3 softmax
upconv2 | 3 | 1 | 64 1 4 deconv3 ELU
deconv2 | 3 | 1 | 64 1 2 upconv2?, conv3 | ELU
ddv2 3 (1] 128 1 2 deconv2 Linear
disp2 3111 1 2 ddv2 softmax
upconvl | 3 | 1 | 32 1 2 deconv2 ELU
deconvl | 3 | 1 | 32 1 1 upconv1?t ELU
ddvl 3 (1] 128 1 1 deconvl Linear
displ 3711 1 1 ddvl softmax

Table 1. Network architecture. This table details the kernel size
(k), stride (s), output channels (ch) dilation factor (dilation), reso-
lution scale (res), input features for each layer (input) and activa-
tion function (activation) used in our model. Layers marked with
1 represent a 2 X nearest-neighbour upsampling before passing to
the convolutional layer. Residual blocks are denoted by res* nam-
ing convention. Each convolution and residual block also uses
batch normalisation in the form of a inplace activated batch nor-
malisation [ 1]. The self-attention module (context) is denoted as
having an activation of Self-Artn.
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Figure 1. Additional Qualitative Comparison. A comparison of our method (last row) with several other methods for monocular and
stereo trained self supervised depth estimation.



Figure 2. Additional uncertainty results The Discrete Disparity Volume (DDV) allows us to compute pixel-wise depth uncertainty by
measuring the variance across the disparity ray. Left: Input Image, Middle: Depth prediction, Right: Uncertainty (Blue indicates areas of
low uncertainty, green/red regions indicate areas of high/highest uncertainty).
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Figure 3. Additional attention maps selected at random from the output of context module (Blue indicates areas of high attention).



Method Train || AbsRel | SqRel | RMSE | RMSElog | § < 1.25 | § < 1.25% | § < 1.25°
Zhou [16]} M 0.176 1.532 | 6.129 0.244 0.758 0.921 0.971
Mahjourian [7] M 0.134 0.983 | 5.501 0.203 0.827 0.944 0.981
GeoNet [14] M 0.132 0.994 | 5.240 0.193 0.833 0.953 0.985
DDVO [13] M 0.126 0.866 | 4.932 0.185 0.851 0.958 0.986
Ranjan [10] M 0.123 0.881 | 4.834 0.181 0.860 0.959 0.985
EPC++ [6] M 0.120 0.789 | 4.755 0.177 0.856 0.961 0.987
Monodepth2 [5] w/o pretraining M 0.112 0.715 | 4.502 0.167 0.876 0.967 0.990
Monodepth2 [5] M 0.090 0.545 | 3.942 0.137 0.914 0.983 0.995
Ours M 0.081 0484 | 3.716 0.126 0.927 0.985 0.996
Monodepth [4] S 0.109 0.811 | 4.568 0.166 0.877 0.967 0.988
3net [9] (VGG) S 0.119 0.920 | 4.824 0.182 0.856 0.957 0.985
3net [9] (ResNet 50) S 0.102 0.675 | 4.293 0.159 0.881 0.969 0.991
SuperDepth [8] + pp S 0.090 0.542 | 3.967 0.144 0.901 0.976 0.993
Monodepth2 [5] w/o pretraining S 0.110 0.849 | 4.580 0.173 0.875 0.962 0.986
Monodepth2 [5] S 0.085 0.537 | 3.868 0.139 0.912 0.979 0.993
Zhan FulINYU [15] D*MS 0.130 1.520 | 5.184 0.205 0.859 0.955 0.981
EPC++ [6] MS 0.123 0.754 | 4.453 0.172 0.863 0.964 0.989
Monodepth2[5] w/o pretraining MS 0.107 0.720 | 4.345 0.161 0.890 0.971 0.989
Monodepth2[5] MS 0.080 0.466 | 3.681 0.127 0.926 0.985 0.995

Table 2. Quantitative results on KITTI improved ground truth. Comparison of existing methods to our own on the KITTI 2015 [3]
using the improved ground truth [12] of the Eigen test split [2]. The Best results are presented in bold for each category, with second best
results underlined. The supervision level for each method is presented in the Train column with; D — Depth Supervision, D* — Auxiliary
depth supervision, S — Self-supervised stereo supervision, M — Self-supervised mono supervision. Results are presented without any post-
processing [4], unless marked with — + pp. If newer results are available on github, these are marked with — {. Non-Standard resolutions
are documented along with the method name. Metrics indicated by red: lower is better, Metrics indicated by blue: higher is better
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