
Select to Better Learn: Fast and Accurate Deep Learning using Data Selection
from Nonlinear Manifolds:
Supplementary Material

Mohsen Joneidi∗, Saeed Vahidian†, Ashkan Esmaeili∗, Weijia Wang†, Nazanin Rahnavard∗, Bill Lin†,
and Mubarak Shah#

∗ University of Central Florida, Department of Electrical Engineering and Computer Science
† University of California, San Diego, Department of Electrical and Computer Engineering

# University of Central Florida, Center for Research in Computer Vision

The supplementary material provided in this document is
organized as follows. In Section 1, we present a theoretical
result on the equivalence of the locally linear selection with
the linear selection after applying kernel. Then, in Section
2, further experiments are provided to investigate the per-
formance of the proposed approaches on several different
real datasets.

1. Theoretical Results

The following lemma shows how the introduced locally
linear selection problem in the original paper can turn into
the plain linear selection on the kernelized version of data.

Lemma 1 Consider M data points and the neighborhood
for each one are denoted by am and Ωm, respectively. The
following problems have the same selection results using
the SP algorithm.

P1 : argmin
|S|≤K

M∑
m=1

‖am − πSm(am)‖2F s.t. Sm ⊆ S ∩ Ωm,

and,
P2 : argmin

|S|≤K

‖H − πS(H)‖22,

where hij = [ |Ωi∩Ωj |aTi aj ] and |.| denotes the cardinality
of a set.

Proof of Lemma 1: Matrix Xm∈RM×N is defined as an
all-zero matrix except in rows indexed by Ωm. The non-
zero rows are equal to aTm (repeated for all those rows).
Matrix X ∈ RMN×M is defined as follows,

X = [vec(X1), · · · , vec(XM )].

Operator vec(.) reshapes a matrix into a vector. Using the
definition of X , Problem P1 can be cast in terms of X as
follows,

argmin
|S|≤K

M∑
m=1

‖xm − πS(xm)‖22

Please note that neighborhood information has been in-
fused in matrix X and neighborhood constraints are re-
moved in comparison with P1. In other words, each data
is allowed to be approximated using its neighbors as aimed
by P1. Non-neighbor samples have no impact on the least
square cost function since xTi xj = 0 for all pairs of (i, j)
non-neighbor samples. Thus, P1 can be re-written as,

argmin
|S|≤K

‖X − πS(X)‖2F .

Given the singular value decomposition of X as X =
UΣV T , where U and V are orthogonal matrices and Σ is
the diagonal matrix of singular values, we have XTX =
V ΣUTUΣV T = V Σ2V T . Thus, the k-th left eigenvec-
tor of XTX is a scaled version of vk, the k-th column of
V . Moreover,

XTuk =

rank(X)∑
i=1

σiviu
T
i uk = σkvk, (1)

where the last equality follows from orthogonality of U .
Therefore, XTuk is a scaled version of vk, the k-th left
eigenvector of XTX .

As the following step of the proof, we proceed to state
that the same data index, m1, which maximizes |xTmuk|
also maximizes |hTmXTuk|, where hm is the mth column
of H = XTX . This can be proved as follow. Let

m1 = argmax
m

|xTmuk |, (2)

i.e., the index which picks the largest magnitude in vector
XTuk = σkvk. Similarly, one can write hTmXTuk =

1



[(XTX)m]TXTuk. Let m2 = argmax
m

wm s.t. w =

|XTXXTuk|. We have

XTX︸ ︷︷ ︸
H

kth left singular vector of H︷ ︸︸ ︷
XTuk=V ΣUTUΣV TV ΣUTuk =V Σ3UTuk

= σ3
kvk. (3)

This means both optimizations (2) and (3) result in find-
ing the index of the element in vk with the largest absolute
value. This means m1 = m2. Therefore, selection with
SP results in the same selection by solving the following
problem as solution of P1.

argmin
|S|≤K

‖H − πS(H)‖2F �

The SP algorithm performs an iterative selection. In each
iteration selection is performed on the residual of data af-
ter projection on the null space of previously selected sam-
ples. Thus, in each iteration P1 and P2 are performed on
the residual corresponding to the current iteration and they
result in the same index.

Matrix H is equal to the weighted replica of auto-
correlation matrix of data, ATA. The weights come from
the neighborhood information. For example, if data i and
data j are not neighbors, then hij = 0. And if they share
P neighbors then hij = PaTi aj . Matrix H is a similarity
matrix and any other graph-based similarity matrix is rea-
sonable to substitute H . In the main paper, we employ nor-
malized similarity matrix, the definition of which is inspired
by Laplacian graph of neighborhood. This choice is a con-
ventional similarity matrix in the context of manifold-based
dimension reduction. Moreover, it can be employed easily
for graph summarization which is investigated in the main
manuscript. The neighborhood and weighting in definition
of matrix H is hard, while the normalized similarity ma-
trix based on Gaussian kernel provides a soft neighborhood
definition via smooth weighting. Employing the normalized
similarity matrix results in Problem (6) in the main paper.

Fig. 1 illustrates the impact of nonlinear modeling on
a toy example containing a set of 100×100 images where
each image is a rotated and resized version of other images
(Fig. 1(a)). Since none of the images lie on the linear sub-
space spanned by the rest of images, the ensemble of these
data do not form a linear subspace. Therefore, this dataset
is of high rank and the union of linear subspaces is not a
proper underlying model for it. The KSP algorithm is im-
plemented using a Gaussian kernel with parameter α, i.e.,
sij , e−α‖ai−aj‖2 . As shown in Fig. 1 (c), the nonlinear
selection algorithm has been able to discover the intrinsic
structure of data and select data from more distinguished
angles than that of Fig. 1 (b) in which the plain SP is ap-
plied.

2. Supplementary Experiments

Further experiments in this section support experiments
of the main paper.

2.1. Convergence of SP

Provably convergent version of SP algorithm needs a
slight modification in the algorithm which is explained later
in this section. However, lots of experiments show that the
proposed SP algorithm in the main paper converges in less
than 5K iterations for selecting K samples. Fig. 2 and Fig.
3 show convergence behavior of SP and KSP for selecting
from multi-pie face data set and Cora citation dataset within
less than 5K iterations. We demonstrated our empirical re-
sults on the convergence of SP in this section. However,
they do not guarantee that SP is provably convergent. A
slight modification of SP can guarantee convergence. At
each iteration of SP, a new sample is selected only if the re-
sulted residual error decreases (Alg. 1 (SP), line 7). This
way the error is non-increasing. The error is also lower
bounded by ‖A−AK‖2F . These two conditions guarantee
that the algorithm converges and quality of the selected sub-
set always improves or remains the same. Alg. 1 describes
the provably convergent version of the SP algorithm. In line
7, 8 and 9 we check if the new updated sample provides
a better minimizer than the previous sample. The initial
selection of SP algorithm can affect the final selected set.
However, regardless of initialization, SP converges to ap-
proximately the same cost as shown here in Fig. 4. Further,
initialization of SP using a deterministic algorithm such as
IPM [2] and SMRS makes SP independent of initialization.
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Figure 1: (a) A dataset lies on a two dimensional manifold identified
by two parameters, rotation and size. However, the rank of corresponding
matrix to this dataset is a large number. (b) Linear embedding using linear
PCA and selection using linear SP. (c) nonlinear embedding using tSNE[1]
and selection using kernel-SP. Un-selected and selected samples are shown
as red and black dots in the embedded space, respectively. The non-linear
embedding using a kernel is able to keep the intrinsic structure and non-
linear selection provides more diverse samples.



Algorithm 1 Provably Convergent SP
Require: A, P and K

Output: AS
1: Initialization:

S←A random subset of {1, . . . ,M} with |S| = K
{Sk}Kk=1 ← Partition S into K sets that each one has 1 element.
iter= 0
while the stopping criterion is not met

2: k =mod(iter,K)+1
3: Uk = normalize column(AS\Sk )

4: V k = ATUk(UT
k
Uk)−1

5: Ek = A−UkV k
T

6: uk = first left singular-vector of Ek
7: Ωk ←− indices of the most correlated columns of Ek with u
8: Ω = Ωk

⋃
Sk

9: Sk ←− argmin
c∈Ω
‖Ek − uvT ‖ s.t. u = ãc

10: S←−
⋃K

k′=1 Sk′

11: iter=iter+1
end while

2.2. GAN on Multi-pie Face Dataset

As it is discussed in the main paper, we select only 9 im-
ages from each subject (1800 total subjects), and train the
network with the reduced dataset for 300 epochs using the
batch size of 36. Fig. 5 shows the generated images of a
subject in the testing set, using the trained network on the
reduced dataset, as well as using the complete dataset. The
network trained on samples selected by KSP (fifth row) is
able to generate more realistic images, with fewer artifacts,
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Figure 2: Selecting 5 and 20 representatives from the first 20
classes of Multi-pie dataset. Each class has 520 samples and the
error trajectory of each single implementation is depicted in order
to show that SP algorithm converges for each independent selec-
tion. (Left) Projection error for selecting 5 samples versus itera-
tions. (Right) Projection error for selecting 20 samples versus it-
erations. Typically, SP selects K representatives in 5K iterations.
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Figure 3: Selecting different number of nodes from Cora dataset
which is a graph-based dataset. SP on the similarity matrix of
this graph converges in only K iterations which is the minimum
number of iterations for updating K selected nodes.
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Figure 4: CSSP cost function of selecting K = 5 out of 520
samples using SP with 100 random Init. as the first iteration vs. the
IPM algorithm, which is deterministic. Interestingly, the accuracy
of IPM is comparable with SP using onlyK iterations with a rough
random initialization. However, SP continues iterations.
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Figure 5: Multi-view face generation results for a sample subject
in testing set using CR-GAN [3]. The network is trained on a
selected subset of training set (9 images per subject) using random
selection (first row), K-medoids (second row), DS3 [4] (third row),
IPM (fourth row), and our proposed KSP algorithm. The sixth
row shows the results generated by the network trained on all the
data (360 images per subject). KSP generates closest results to
the complete dataset. In the main paper, a quantitative measure is
studied for comparing the generated images and the ground truth
from different viwes.

compared to other selection methods (rows 1-4). The pa-
rameter of KSP is set as 1e− 4 for constructing the similar-
ity matrix.

2.3. Graph Summarization

In Section 4.3 of the paper we presented one of the im-
portant applications of KSP algorithm i.e., graph summa-
rization. Here in Fig 6 we compare the central vertex selec-
tion and community detection capability of KSP with other
state-of-the-art algorithms provided in table 2 for the Pow-
erlaw Cluster graph [5].

2.4. Open-set Identification

It is worth noting that in some contexts, open-set is
defined as the set containing both known and unknown
classes. In this paper, we have assumed that open-set is
only used for the unknown classes and the known classes at
the time of training are called the closed-set.

Here, we provide a discussion on how to select the



Figure 6: We apply KSP and other algorithms as in table 2, to choose
three of the main vertices from another graph, i.e., Powerlaw Cluster graph
for which the quantitative results were provided in table 2. The nodes
selected by different methods are: GIGA, MP and FW select•, IS selects•, VS selects •, DS3 selects •, and KSP and FFS select •. As is
evident, KSP and FFS are the only ones that are able to detect the clusters
and their corresponding vertices.
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Figure 7: F1-score vs. threshold for different number of selected repre-
sentatives (Accuracy-Sensitivity Trade-off)

threshold in the open-set identification experiment setup.
First, a network is trained on the MNIST training data.
Next, the validation data consisting of data from both the
known and unknown classes is used to find the threshold as
in algorithm 3 in the main text.
At the time of test, a pre-determined threshold is required
for deciding on test samples. Our proposed method works
based on accessing a set of error values by splitting them
and deciding on the threshold. Using one test sample at
a time does not lead to a set of error values for splitting
at a time. Therefore, one can simply assign the threshold
to be a value slightly larger than maximum of error val-
ues relating to projecting training samples on selected rep-
resentatives from each class. Alternatively, if the learning
framework is allowed to access validation data, the thresh-
old can be achieved by clustering error values in the bal-
anced validation data into two groups with two centroids,
and then taking their average (1:1 sample ratio for Omniglot
and MNIST in our case).

Fig. 7 contains the macro-averaged F1-score vs. thresh-
old for different selected representatives using SP data se-
lection. Fine-tuning the open-set identifier by selecting best
representatives enhances the accuracy significantly as ob-
served in Fig. 7. As the number of representatives de-
creases, the performance sensitivity to the threshold adjust-
ment increases which means there is a trade-off between
accuracy using selection-based scheme and the stability of
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Figure 8: ROC of the proposed selection-based open-set identifi-
cation employing KSP. The parameter of KSP for constructing the
similarity matrix is set to 0.6.

performance w.r.t the designed threshold range. Fig. 7 also
shows that between 50-100 samples from each training class
(each containing about 6000) leads to optimal F1-score.

In Fig. 8, the receiver operating characteristic (ROC) of
area under the curve (AUC) is plotted for the KSP method
in the open-set identification. Different number of selected
representatives in the proposed SOSIS algorithm (Alg. 3 in
the main text) are considered. Sweeping through the thresh-
old range, the ROC-AUC is achieved for SOSIS algorithm
with each desired number of selected samples. As observed
and magnified in Fig. 8, the best ROC-AUC performance
(higher in plot) is achieved for about 20− 50 number of se-
lected representatives.
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