
Supplemental Material:
Analyzing and Improving the Image Quality of StyleGAN

Tero Karras
NVIDIA

tkarras@nvidia.com

Samuli Laine
NVIDIA

slaine@nvidia.com

Miika Aittala
NVIDIA

jlehtinen@nvidia.com

Janne Hellsten
NVIDIA

jhellsten@nvidia.com

Jaakko Lehtinen
NVIDIA and Aalto University

jlehtinen@nvidia.com

Timo Aila
NVIDIA

taila@nvidia.com

A. Image quality

We include several large images that illustrate various as-
pects related to image quality. Figure 1 shows hand-picked
examples illustrating the quality and diversity achievable
using our method in FFHQ, while Figure 2 shows uncu-
rated results for all datasets mentioned in the paper.

Figures 3 and 4 demonstrate cases where FID and P&R
give non-intuitive results, but PPL seems to be more in line
with human judgement.

We also include images relating to StyleGAN artifacts.
Figure 5 shows a rare case where the blob artifact fails to
appear in StyleGAN activations, leading to a seriously bro-
ken image. Figure 6 visualizes the activations inside Table 1
of the paper configurations A and F. It is evident that pro-
gressive growing leads to higher-frequency content in the
intermediate layers, compromising shift invariance of the
network. We hypothesize that this causes the observed un-
even location preference for details when progressive grow-
ing is used.

B. Implementation details

We implemented our techniques on top of the official
TensorFlow implementation of StyleGAN1 corresponding
to configuration A in Table 1 of the paper. We kept most
of the details unchanged, including the dimensionality of
Z andW (512), mapping network architecture (8 fully con-
nected layers, 100× lower learning rate), equalized learning
rate for all trainable parameters [5], leaky ReLU activation
with α = 0.2, bilinear filtering [13] in all up/downsampling
layers [6], minibatch standard deviation layer at the end of
the discriminator [5], exponential moving average of gen-
erator weights [5], style mixing regularization [6], non-
saturating logistic loss [4] withR1 regularization [9], Adam

1https://github.com/NVlabs/stylegan

optimizer [7] with the same hyperparameters (β1 = 0, β2 =
0.99, ε = 10−8,minibatch = 32), and training datasets
[6, 12]. We performed all training runs on NVIDIA DGX-
1 with 8 Tesla V100 GPUs using TensorFlow 1.14.0 and
cuDNN 7.4.2.

Generator redesign In configurations B–F we replace the
original StyleGAN generator with our revised architecture.
In addition to the changes highlighted in Section 2 of the pa-
per, we initialize components of the constant input c1 using
N (0, 1) and simplify the noise broadcast operations to use a
single shared scaling factor for all feature maps. Similar to
Karras et al. [6], we initialize all weights usingN (0, 1) and
all biases and noise scaling factors to zero, except for the bi-
ases of the affine transformation layers, which we initialize
to one. We employ weight modulation and demodulation in
all convolution layers, except for the output layers (tRGB
in Figure 7 of the paper) where we leave out the demodula-
tion. With 10242 output resolution, the generator contains
a total of 18 affine transformation layers where the first one
corresponds to 42 resolution, the next two correspond to 82,
and so forth.

Weight demodulation Considering the practical imple-
mentation of Equations 1 and 3 of the paper, it is important
to note that the resulting set of weights will be different for
each sample in a minibatch, which rules out direct imple-
mentation using standard convolution primitives. Instead,
we choose to employ grouped convolutions [8] that were
originally proposed as a way to reduce computational costs
by dividing the input feature maps into multiple indepen-
dent groups, each with their own dedicated set of weights.
We implement Equations 1 and 3 of the paper by temporar-
ily reshaping the weights and activations so that each con-
volution sees one sample with N groups — instead of N

Figure 1. Four hand-picked examples illustrating the image quality and diversity achievable using StylegGAN2 (config F).

F
F

H
Q

L
S

U
N

C
A

R
L

S
U

N
C

A
T

L
S

U
N

C
H

U
R

C
H

L
S

U
N

H
O

R
S

E

Figure 2. Uncurated results for each dataset used in Tables 1 and 3 of the paper. The images correspond to random outputs produced by
our generator (config F), with truncation applied at all resolutions using ψ = 0.5 [6].

Model 1: FID = 8.53, P = 0.64, R = 0.28, PPL = 924

Model 2: FID = 8.53, P = 0.62, R = 0.29, PPL = 387

Figure 3. Uncurated examples from two generative models trained on LSUN CAT without truncation. FID, precision, and recall are similar
for models 1 and 2, even though the latter produces cat-shaped objects more often. Perceptual path length (PPL) indicates a clear preference
for model 2. Model 1 corresponds to configuration A in Table 3 of the paper, and model 2 is an early training snapshot of configuration F.

Model 1: FID = 3.27, P = 0.70, R = 0.44, PPL = 1485

Model 2: FID = 3.27, P = 0.67, R = 0.48, PPL = 437

Figure 4. Uncurated examples from two generative models trained on LSUN CAR without truncation. FID, precision, and recall are similar
for models 1 and 2, even though the latter produces car-shaped objects more often. Perceptual path length (PPL) indicates a clear preference
for model 2. Model 1 corresponds to configuration A in Table 3 of the paper, and model 2 is an early training snapshot of configuration F.

Feature map 642 Feature map 1282 Feature map 2562 Feature map 5122 Generated image

Figure 5. An example of the importance of the droplet artifact in StyleGAN generator. We compare two generated images, one successful
and one severely corrupted. The corresponding feature maps were normalized to the viewable dynamic range using instance normalization.
For the top image, the droplet artifact starts forming in 642 resolution, is clearly visible in 1282, and increasingly dominates the feature
maps in higher resolutions. For the bottom image, 642 is qualitatively similar to the top row, but the droplet does not materialize in 1282.
Consequently, the facial features are stronger in the normalized feature map. This leads to an overshoot in 2562, followed by multiple
spurious droplets forming in subsequent resolutions. Based on our experience, it is rare that the droplet is missing from StyleGAN images,
and indeed the generator fully relies on its existence.

Generated image Feature map 1282 Generated image Feature map 1282

(a) Progressive growing (config A) (b) Without progressive growing (config F)

Figure 6. Progressive growing leads to significantly higher frequency content in the intermediate layers. This compromises shift-invariance
of the network and makes it harder to localize features precisely in the higher-resolution layers.

samples with one group. This approach is highly efficient
because the reshaping operations do not actually modify the
contents of the weight and activation tensors.

Lazy regularization In configurations C–F we employ
lazy regularization (Section 3.1 of the paper) by evaluating
the regularization terms (R1 and path length) in a separate
regularization pass that we execute once every k training
iterations. We share the internal state of the Adam opti-
mizer between the main loss and the regularization terms,
so that the optimizer first sees gradients from the main loss

for k iterations, followed by gradients from the regulariza-
tion terms for one iteration. To compensate for the fact that
we now perform k + 1 training iterations instead of k, we
adjust the optimizer hyperparameters λ′ = c·λ, β′1 = (β1)c,
and β′2 = (β2)c, where c = k/(k + 1). We also multiply
the regularization term by k to balance the overall magni-
tude of its gradients. We use k = 16 for the discriminator
and k = 8 for the generator.

Path length regularization Configurations D–F include
our new path length regularizer (Section 3.2 of the paper).

We initialize the target scale a to zero and track it on a per-
GPU basis as the exponential moving average of

∥∥JT
wy
∥∥
2

using decay coefficient βpl = 0.99. We weight our regular-
ization term by

γpl =
ln 2

r2(ln r − ln 2)
, (1)

where r specifies the output resolution (e.g. r = 1024). We
have found these parameter choices to work reliably across
all configurations and datasets. To ensure that our regular-
izer interacts correctly with style mixing regularization, we
compute it as an average of all individual layers of the syn-
thesis network. Appendix C provides detailed analysis of
the effects of our regularizer on the mapping between W
and image space.

Progressive growing In configurations A–D we use
progressive growing with the same parameters as Kar-
ras et al. [6] (start at 82 resolution and learning rate λ =
10−3, train for 600k images per resolution, fade in next res-
olution for 600k images, increase learning rate gradually by
3×). In configurations E–F we disable progressive grow-
ing and set the learning rate to a fixed value λ = 2 · 10−3,
which we found to provide the best results. In addition, we
use output skips in the generator and residual connections
in the discriminator as detailed in Section 4.1 of the paper.

Dataset-specific tuning Similar to Karras et al. [6], we
augment the FFHQ dataset with horizontal flips to effec-
tively increase the number of training images from 70k to
140k, and we do not perform any augmentation for the
LSUN datasets. We have found that the optimal choices for
the training length and R1 regularization weight γ tend to
vary considerably between datasets and configurations. We
use γ = 10 for all training runs except for configuration E in
Table 1 of the paper, as well as LSUN CHURCH and LSUN
HORSE in Table 3 of the paper, where we use γ = 100. It
is possible that further tuning of γ could provide additional
benefits.

Performance optimizations We profiled our training
runs extensively and found that — in our case — the default
primitives for image filtering, up/downsampling, bias ad-
dition, and leaky ReLU had surprisingly high overheads in
terms of training time and GPU memory footprint. This mo-
tivated us to optimize these operations using hand-written
CUDA kernels. We implemented filtered up/downsampling
as a single fused operation, and bias and activation as an-
other one. In configuration E at 10242 resolution, our opti-
mizations improved the overall training time by about 30%
and memory footprint by about 20%.

C. Effects of path length regularization
The path length regularizer described in Section 3.2 of

the paper is of the form:

Lpl = EwEy

(∥∥JT
wy
∥∥
2
− a
)2
, (2)

where y ∈ RM is a unit normal distributed random variable
in the space of generated images (of dimension M = 3wh,
namely the RGB image dimensions), Jw ∈ RM×L is the
Jacobian matrix of the generator function g : RL 7→ RM at
a latent space point w ∈ RL, and a ∈ R is a global value
that expresses the desired scale of the gradients.

C.1. Effect on pointwise Jacobians

The value of this prior is minimized when the inner ex-
pectation over y is minimized at every latent space point w
separately. In this subsection, we show that the inner ex-
pectation is (approximately) minimized when the Jacobian
matrix Jw is orthogonal, up to a global scaling factor. The
general strategy is to use the well-known fact that, in high
dimensions L, the density of a unit normal distribution is
concentrated on a spherical shell of radius

√
L. The inner

expectation is then minimized when the matrix JT
w scales

the function under expectation to have its minima at this ra-
dius. This is achieved by any orthogonal matrix (with suit-
able global scale that is the same at every w).

We begin by considering the inner expectation

Lw := Ey

(∥∥JT
wy
∥∥
2
− a
)2
.

We first note that the radial symmetry of the distribution of
y, as well as of the l2 norm, allows us to focus on diag-
onal matrices only. This is seen using the Singular Value
Decomposition JT

w = UΣ̃VT , where U ∈ RL×L and
V ∈ RM×M are orthogonal matrices, and Σ̃ = [Σ 0] is
a horizontal concatenation of a diagonal matrix Σ ∈ RL×L

and a zero matrix 0 ∈ RL×(M−L) [3]. Because rotating a
unit normal random variable by an orthogonal matrix leaves
the distribution unchanged, and rotating a vector leaves its
norm unchanged, the expression simplifies to

Lw = Ey

(∥∥∥UΣ̃VTy
∥∥∥
2
− a
)2

= Ey

(∥∥∥Σ̃y
∥∥∥
2
− a
)2
.

Furthermore, the zero matrix in Σ̃ drops the dimensions of
y beyond L, effectively marginalizing its distribution over
those dimensions. The marginalized distribution is again a
unit normal distribution over the remaining L dimensions.
We are then left to consider the minimization of the expres-
sion

Lw = Eỹ (‖Σỹ‖2 − a)
2
,

over diagonal square matrices Σ ∈ RL×L, where ỹ is unit
normal distributed in dimensionL. To summarize, all matri-
ces JT

w that share the same singular values with Σ produce
the same value for the original loss.

Next, we show that this expression is minimized when
the diagonal matrix Σ has a specific identical value at every
diagonal entry, i.e., it is a constant multiple of an identity
matrix. We first write the expectation as an integral over the
probability density of ỹ:

Lw =

∫
(‖Σỹ‖2 − a)

2
pỹ(ỹ) dỹ

= (2π)−
L
2

∫
(‖Σỹ‖2 − a)

2
exp

(
− ỹT ỹ

2

)
dỹ

Observing the radially symmetric form of the density, we
change into a polar coordinates ỹ = rφ, where r ∈ R+ is
the distance from origin, and φ ∈ SL−1 is a unit vector, i.e.,
a point on the L − 1-dimensional unit sphere. This change
of variables introduces a Jacobian factor rL−1:

L̃w = (2π)−
L
2

∫
S

∫ ∞
0

(r ‖Σφ‖2 − a)
2
rL−1

exp

(
−r

2

2

)
dr dφ

The probability density (2π)−L/2rL−1exp
(
− r2

2

)
is

then an L-dimensional unit normal density expressed in po-
lar coordinates, dependent only on the radius and not on the
angle. A standard argument by Taylor approximation shows
that when L is high, for any φ the density is well approx-
imated by density (2πe/L)−L/2exp

(
− 1

2 (r − µ)2/σ2
)
,

which is a (unnormalized) one-dimensional normal density
in r, centered at µ =

√
L of standard deviation σ = 1/

√
2

[1]. In other words, the density of the L-dimensional unit
normal distribution is concentrated on a shell of radius

√
L.

Substituting this density into the integral, the loss becomes
approximately

Lw ≈ (2πe/L)−L/2

∫
S

∫ ∞
0

(r ‖Σφ‖2 − a)
2

exp

−
(
r −
√
L
)2

2σ2

 dr dφ, (3)

where the approximation becomes exact in the limit of infi-
nite dimension L.

To minimize this loss, we set Σ such that the function
(r ‖Σφ‖2 − a)

2 obtains minimal values on the spherical
shell of radius

√
L. This is achieved by Σ = a√

L
I, whereby

the function becomes constant in φ and the expression re-

duces to

Lw ≈ (2πe/L)−L/2A(S)a2L−1
∫ ∞
0

(
r −
√
L
)2

exp

−
(
r −
√
L
)2

2σ2

 dr,

where A(S) is the surface area of the unit sphere (and
like the other constant factors, irrelevant for minimization).
Note that the zero of the parabola (r−

√
L)2 coincides with

the maximum of the probability density, and therefore this
choice of Σ minimizes the inner integral in Eq. 3 separately
for every φ.

In summary, we have shown that — assuming a high di-
mensionality L of the latent space — the value of the path
length prior (Eq. 2) is minimized when all singular values
of the Jacobian matrix of the generator are equal to a global
constant, at every latent space point w, i.e., they are orthog-
onal up to a globally constant scale.

While in theory a merely scales the values of the map-
ping without changing its properties and could be set to a
fixed value (e.g., 1), in practice it does affect the dynam-
ics of the training. If the imposed scale does not match
the scale induced by the random initialization of the net-
work, the training spends its critical early steps in pushing
the weights towards the required overall magnitudes, rather
than enforcing the actual objective of interest. This may de-
grade the internal state of the network weights and lead to
sub-optimal performance in later training. Empirically we
find that setting a fixed scale reduces the consistency of the
training results across training runs and datasets. Instead,
we set a dynamically based on a running average of the ex-
isting scale of the Jacobians, namely a ≈ Ew,y

(∥∥JT
wy
∥∥
2

)
.

With this choice the prior targets the scale of the local Jaco-
bians towards whatever global average already exists, rather
than forcing a specific global average. This also eliminates
the need to measure the appropriate scale of the Jacobians
explicitly, as is done by Odena et al. [11] who consider a
related conditioning prior.

Figure 7 shows empirically measured magnitudes of sin-
gular values of the Jacobian matrix for networks trained
with and without path length regularization. While orthog-
onality is not reached, the eigenvalues of the regularized
network are closer to one another, implying better condi-
tioning, with the strength of the effect correlated with the
PPL metric (Table 1 of the paper).

C.2. Effect on global properties of generator map-
ping

In the previous subsection, we found that the prior en-
courages the Jacobians of the generator mapping to be ev-
erywhere orthogonal. While Figure 7 shows that the map-

10 3

10 2

10 1

FFHQ, Config A
FFHQ, Config C
FFHQ, Config D
FFHQ, Config F

10 4

10 3

10 2

10 1

Cars, Config A
Cars, Config C
Cars, Config D
Cars, Config F

Figure 7. The mean and standard deviation of the magnitudes of
sorted singular values of the Jacobian matrix evaluated at random
latent space points w, with largest eigenvalue normalized to 1.
In both datasets, path length regularization (Config D) and novel
architecture (Config F) exhibit better conditioning; notably, the ef-
fect is more pronounced in the Cars dataset that contains much
more variability, and where path length regularization has a rela-
tively stronger effect on the PPL metric (Table 1 of the paper).

ping does not satisfy this constraint exactly in practice, it is
instructive to consider what global properties the constraint
implies for mappings that do. Without loss of generality,
we assume unit global scale for the matrices to simplify the
presentation.

The key property is that that a mapping g : RL 7→ RM

with everywhere orthogonal Jacobians preserves the lengths
of curves. To see this, let u : [t0, t1] 7→ RL parametrize a
curve in the latent space. Mapping the curve through the
generator g, we obtain a curve ũ = g ◦ u in the space of
images. Its arc length is

L =

∫ t1

t0

|ũ′(t)| dt, (4)

where prime denotes derivative with respect to t. By chain
rule, this equals

L =

∫ t1

t0

|Jg(u(t))u′(t)| dt, (5)

where Jg ∈ RL×M is the Jacobian matrix of g evaluated at
u(t). By our assumption, the Jacobian is orthogonal, and
consequently it leaves the 2-norm of the vector u′(t) unaf-
fected:

L =

∫ t1

t0

|u′(t)| dt. (6)

This is the length of the curve u in the latent space, prior to
mapping with g. Hence, the lengths of u and ũ are equal,
and so g preserves the length of any curve.

In the language of differential geometry, g isometrically
embeds the Euclidean latent space RL into a submani-
fold M in RM — e.g., the manifold of images represent-
ing faces, embedded within the space of all possible RGB
images. A consequence of isometry is that straight line seg-
ments in the latent space are mapped to geodesics, or short-
est paths, on the image manifold: a straight line v that con-
nects two latent space points cannot be made any shorter, so

neither can there be a shorter on-manifold image-space path
between the corresponding images than g ◦ v. For exam-
ple, a geodesic on the manifold of face images is a continu-
ous morph between two faces that incurs the minimum total
amount of change (as measured by l2 difference in RGB
space) when one sums up the image difference in each step
of the morph.

Isometry is not achieved in practice, as demonstrated in
empirical experiments in the previous subsection. The full
loss function of the training is a combination of potentially
conflicting criteria, and it is not clear if a genuinely isomet-
ric mapping would be capable of expressing the image man-
ifold of interest. Nevertheless, a pressure to make the map-
ping as isometric as possible has desirable consequences. In
particular, it discourages unnecessary “detours”: in a non-
constrained generator mapping, a latent space interpolation
between two similar images may pass through any number
of distant images in RGB space. With regularization, the
mapping is encouraged to place distant images in different
regions of the latent space, so as to obtain short image paths
between any two endpoints.

D. Projection method details
Given a target image x, we seek to find the correspond-

ing w ∈ W and per-layer noise maps denoted ni ∈ Rri×ri

where i is the layer index and ri denotes the resolution of
the ith noise map. The baseline StyleGAN generator in
1024×1024 resolution has 18 noise inputs, i.e., two for each
resolution from 4×4 to 1024×1024 pixels. Our improved
architecture has one fewer noise input because we do not
add noise to the learned 4×4 constant (Figure 1 of the pa-
per).

Before optimization, we compute µw = Ez f(z) by run-
ning 10 000 random latent codes z through the mapping net-
work f . We also approximate the scale ofW by computing
σ2
w = Ez ‖f(z)−µw‖22, i.e., the average square Euclidean

distance to the center.
At the beginning of optimization, we initialize w = µw

and ni = N (0, I) for all i. The trainable parameters are
the components of w as well as all components in all noise
maps ni. The optimization is run for 1000 iterations us-
ing Adam optimizer [7] with default parameters. Maxi-
mum learning rate is λmax = 0.1, and it is ramped up from
zero linearly during the first 50 iterations and ramped down
to zero using a cosine schedule during the last 250 itera-
tions. In the first three quarters of the optimization we add
Gaussian noise to w when evaluating the loss function as
w̃ = w +N (0, 0.05σwt

2), where t goes from one to zero
during the first 750 iterations. This adds stochasticity to the
optimization and stabilizes finding of the global optimum.

Given that we are explicitly optimizing the noise maps,
we must be careful to avoid the optimization from sneak-
ing actual signal into them. Thus we include several noise

Generated target image Real target image

No noise With noise No noise With noise
regularization regularization regularization regularization

Figure 8. Effect of noise regularization in latent-space projection
where we also optimize the contents of the noise inputs of the
synthesis network. Top to bottom: target image, re-synthesized
image, contents of two noise maps at different resolutions. When
regularization is turned off in this test, we only normalize the noise
maps to zero mean and unit variance, which leads the optimization
to sneak signal into the noise maps. Enabling the noise regulariza-
tion prevents this. The model used here corresponds to configura-
tion F in Table 1 of the paper.

map regularization terms in our loss function, in addition
to an image quality term. The image quality term is the
LPIPS [14] distance between target image x and the synthe-
sized image: Limage = DLPIPS[x, g(w̃,n0,n1, . . .)]. For
increased performance and stability, we downsample both
images to 256×256 resolution before computing the LPIPS
distance. Regularization of the noise maps is performed on
multiple resolution scales. For this purpose, we form for
each noise map greater than 8×8 in size a pyramid down
to 8×8 resolution by averaging 2×2 pixel neighborhoods
and multiplying by 2 at each step to retain the expected unit
variance. These downsampled noise maps are used for reg-
ularization only and have no part in synthesis.

Let us denote the original noise maps by ni,0 = ni and
the downsampled versions by ni,j>0. Similarly, let ri,j be
the resolution of an original (j = 0) or downsampled (j >
0) noise map so that ri,j+1 = ri,j/2. The regularization

SN-G SN-D Demod P.reg FID ↓ PPL ↓ Pre. ↑ Rec. ↑
1 – – X X 2.83 145.0 0.689 0.492
2 – X X X 2.98 131.4 0.700 0.469
3 X X X X 3.40 130.9 0.720 0.435
4 X X – X 3.38 162.6 0.705 0.468
5 X X – – 3.33 394.9 0.705 0.463
6 X – – X 3.36 217.1 0.695 0.464
7 X – – – 3.22 394.4 0.692 0.489

Table 1. Effect of spectral normalization with FFHQ at 10242.
The first row corresponds to StyleGAN2, i.e., config F in Table 1
of the paper. In the subsequent rows, we enable spectral normal-
ization in the generator (SN-G) and in the discriminator (SN-D).
We also test the training without weight demodulation (Demod)
and path length regularization (P.reg). All of these configurations
are highly detrimental to FID, as well as to Recall. ↑ indicates that
higher is better, and ↓ that lower is better.

term for noise map ni,j is then

Li,j =

(
1

r2i,j
·
∑
x,y

ni,j(x, y) · ni,j(x− 1, y)

)2

+

(
1

r2i,j
·
∑
x,y

ni,j(x, y) · ni,j(x, y − 1)

)2

,

where the noise map is considered to wrap at the edges. The
regularization term is thus sum of squares of the resolution-
normalized autocorrelation coefficients at one pixel shifts
horizontally and vertically, which should be zero for a nor-
mally distributed signal. The overall loss term is then
Ltotal = Limage + α

∑
i,j Li,j . In all our tests, we have

used noise regularization weight α = 105. In addition, we
renormalize all noise maps to zero mean and unit variance
after each optimization step. Figure 8 illustrates the effect
of noise regularization on the resulting noise maps.

E. Results with spectral normalization
Since spectral normalization (SN) is widely used in

GANs [10], we investigated its effect on StyleGAN2. Ta-
ble 1 gives the results for a variety of configurations where
spectral normalization is enabled in addition to our tech-
niques (weight demodulation, path length regularization) or
instead of them.

Interestingly, adding spectral normalization to our gen-
erator is almost a no-op. On an implementation level, SN
scales the weight tensor of each layer with a scalar value
1/σ(w). The effect of such scaling, however, is overrid-
den by Equation 3 of the paper for the main convolutional
layers as well as the affine transformation layers. Thus, the
only thing that SN adds on top of weight demodulation is
through its effect on the tRGB layers.

When we enable spectral normalization in the discrim-
inator, FID is slightly compromised. Enabling it in the
generator as well leads to significantly worse results, even

Item GPU years (Volta) Electricity (MWh)
Initial exploration 20.25 58.94
Paper exploration 13.71 31.49
FFHQ config F 0.23 0.68
Other runs in paper 7.20 16.77
Backup runs left out 4.73 12.08
Video, figures, etc. 0.31 0.82
Public release 4.62 10.82
Total 51.05 131.61

Table 2. Computational effort expenditure and electricity con-
sumption data for this project. The unit for computation is GPU-
years on a single NVIDIA V100 GPU — it would have taken ap-
proximately 51 years to execute this project using a single GPU.
See the text for additional details about the computation and en-
ergy consumption estimates. Initial exploration includes all train-
ing runs after the release of StyleGAN [6] that affected our deci-
sion to start this project. Paper exploration includes all training
runs that were done specifically for this project, but were not in-
tended to be used in the paper as-is. FFHQ config F refers to the
training of the final network. This is approximately the cost of
training the network for another dataset without hyperparameter
tuning. Other runs in paper covers the training of all other net-
works shown in the paper. Backup runs left out includes the train-
ing of various networks that could potentially have been shown in
the paper, but were ultimately left out to keep the exposition more
focused. Video, figures, etc. includes computation that was spent
on producing the images and graphs in the paper, as well as on
the result video. Public release covers testing, benchmarking, and
large-scale image dumps related to the public release.

though its effect is isolated to the tRGB layers. Leaving SN
enabled, but disabling a subset of our contributions does not
improve the situation. Thus we conclude that StyleGAN2
gives better results without spectral normalization.

F. Energy consumption
Computation is a core resource in any machine learning

project: its availability and cost, as well as the associated
energy consumption, are key factors in both choosing re-
search directions and practical adoption. We provide a de-
tailed breakdown for our entire project in Table 2 in terms
of both GPU time and electricity consumption.

We report expended computational effort as single-GPU
years (Volta class GPU). We used a varying number of
NVIDIA DGX-1s for different stages of the project, and
converted each run to single-GPU equivalents by simply
scaling by the number of GPUs used.

The entire project consumed approximately 131.61
megawatt hours (MWh) of electricity. We followed the
Green500 power measurements guidelines [2] as follows.
For each job, we logged the exact duration, number of
GPUs used, and which of our two separate compute clus-
ters the job was executed on. We then measured the ac-
tual power draw of an 8-GPU DGX-1 when it was training
FFHQ config F. A separate estimate was obtained for the

two clusters because they use different DGX-1 SKUs. The
vast majority of our training runs used 8 GPUs, and for the
rest we approximated the power draw by scaling linearly
with n/8, where n is the number of GPUs.

Approximately half of the total energy was spent on early
exploration and forming ideas. Then subsequently a quar-
ter was spent on refining those ideas in more targeted ex-
periments, and finally a quarter on producing this paper
and preparing the public release of code, trained models,
and large sets of images. Training a single FFHQ network
(config F) took approximately 0.68 MWh (0.5% of the to-
tal project expenditure). This is the cost that one would
pay when training the network from scratch, possibly us-
ing a different dataset. In short, vast majority of the elec-
tricity used went into shaping the ideas, testing hypotheses,
and hyperparameter tuning. We did not use automated tools
for finding hyperparameters or optimizing network archi-
tectures.

References
[1] Christopher M. Bishop. Pattern Recognition and Machine

Learning. Springer, 2006. 8
[2] R. Ge, X. Feng, H. Pyla, K. Cameron, and W.

Feng. Power measurement tutorial for the Green500
list. https://www.top500.org/green500/resources/tutorials/,
Accessed March 1, 2020. 11

[3] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns
Hopkins Studies in the Mathematical Sciences. Johns Hop-
kins University Press, 2013. 7

[4] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks. In NIPS,
2014. 1

[5] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of GANs for improved quality, stability,
and variation. CoRR, abs/1710.10196, 2017. 1

[6] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
Proc. CVPR, 2018. 1, 3, 7, 11

[7] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 1, 9

[8] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
ImageNet classification with deep convolutional neural net-
works. In NIPS, pages 1097–1105. 2012. 1

[9] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin.
Which training methods for GANs do actually converge?
CoRR, abs/1801.04406, 2018. 1

[10] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida. Spectral normalization for generative ad-
versarial networks. CoRR, abs/1802.05957, 2018. 10

[11] Augustus Odena, Jacob Buckman, Catherine Olsson, Tom B.
Brown, Christopher Olah, Colin Raffel, and Ian Goodfellow.
Is generator conditioning causally related to GAN perfor-
mance? CoRR, abs/1802.08768, 2018. 8

[12] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianx-
iong Xiao. LSUN: Construction of a large-scale image
dataset using deep learning with humans in the loop. CoRR,
abs/1506.03365, 2015. 1

[13] Richard Zhang. Making convolutional networks shift-
invariant again. In Proc. ICML, 2019. 1

[14] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proc. CVPR, 2018.
10

