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1. Approximating the product of marginals
In (5) of the main manuscript, we presented an approxi-

mation to the product of marginals via negative pairs. Here,
we elaborate and justify this approximation.

First, we rewrite the product of marginals as follows:

p(xi)p(xj) =
∑
k∈C

(
p(xi, c=k)p(xj , c=k)

+
∑
k′∈C
k′ 6=k

p(xi, c=k)p(xj , c=k′)

)

= p(xi, xj) +
∑
k∈C

∑
k′∈C
k′ 6=k

p(xi, c=k)p(xj , c=k′).

(1)

We consider a dataset of N images equally partitioned be-
tween ||C|| classes, i.e., p(c=k) = 1/||C|| is uniformly dis-
tributed and p(xi|c=k) = ||C||/N . We observe that the
first term corresponding to the joint distribution grows lin-
early with ||C||, while the second term corresponding to the
distribution of negative pairs grows quadratically:

p(xi)p(xj) =
||C||
N2

+
||C||2−||C||

N2
. (2)

Since ||C||2−||C||� ||C||, for large ||C||:

p(xi)p(xj) ≈
||C||2−||C||

N2
. (3)

For the datasets used in our experiments, CUB-200-2011
[17], CARS-196 [4] and Stanford Online Products [13], the
number of classes in the training set are 100, 98, and 11318,
respectively.

2. MI estimation with pairwise distances
In (6) and (7) of the main manuscript, we defined

Tφ(zi, zj) as a function of the distance dij between (zi, zj).

Here, we discuss the conditions under which this definition
can provide tight estimates of JSD and provide a motivating
example.

Recall that the dual representation of JSD is defined as:

D̂JSD(J ‖M) =

sup
T∈F

{
EJ[T (zi, zj)] + EM[log(2− eT (zi,zj))]

}
, (4)

where F contains all functions T : X × X −→ R such
that the expectations are finite. This representation has been
previously used to establish a lower bound [8]:

DJSD(J ‖M) ≥ D̂JSD(J ‖M). (5)

Lemma 1 Given an optimal quantizer f : Rn −→ Rd, there
exists a class of functions, F̃ ⊂ F of the following form,
such that the tightest lower bound on JSD can be attained:

F̃ = {T (zi, zj) = log(2)− log(1 + e−V (dij))}, (6)

where dij = D(f(xi), f(xj)) for some distance function
D : Rd × Rd −→ R+.
Proof. Let f : Rn −→ S1, an optimal quantizer of xi, be a
function mapping each image to one of ||C|| equally spaced
points on the unit circle S1 that corresponds to its class label
ci=ki, where ki ∈ {0, 1, ..., ||C||−1}:1

zi = f(xi) =
[
cos(2π ki

||C|| ) sin(2π ki
||C|| )

]
. (7)

Let the lower bound on the JSD estimation error, ε, be de-
fined as follows:

ε =
∣∣∣DJSD(J ‖M)− D̂JSD(J ‖M)

∣∣∣. (8)

Any subset of F will induce an error η such that 0 ≤ ε ≤ η.
Let the function V : R+ → R in (6) be defined as follows:

V (dij) =

{
M dij < τ
−M dij ≥ τ

, (9)

1Here, we focus on 2D embeddings lying on the unit circle; however,
this proof can be extended to any convex subset of Rn.
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where τ is the minimum distance between any pair
(zi, zj) s.t. ci 6= cj . Observe that, as M → ∞, η → ε,
yielding the tightest possible lower bound.
Lemma 2 Given an optimal quantizer of xi, f(xi), there
exists a neural network with parameters φ, which can esti-
mate JSD with arbitrarily small added error.
Proof. By the universal approximation theorem for neu-
ral networks [2], a neural network Vφ can approximate the
supremum over F̃ , and therefore estimate the JSD with an
arbitrarily small, finite error η ∈ [ε,∞).
Conjecture By the universal approximation theorem for
neural networks, a neural network fθ can be trained to ap-
proximate the optimal quantizer, f , such that when trained
in conjunction with Vφ (see Lemma 2), mutual information
between (zi, zj) can be estimated as a function of their dis-
tances dij .
Summary In Lemma 1, we showed that given a well-
behaved function, f , i.e., an optimal quantizer, the JSD be-
tween the joint distribution and the product of marginals can
be estimated tightly as a function of pairwise distances. In
Lemma 2, we showed that this estimation can be performed
with a neural network, Vφ, that induces an arbitrarily small
added error. Finally, we claimed that given a neural net-
work, fθ, that approximates an optimal quantizer, a joint
training process can successfully improve the tightness of
mutual information estimates, as well as the quantization.
Our experiments in the main manuscript confirm this intu-
ition.

3. Monotonic Vφ
Even though we did not observe cases where the require-

ment ∂Vφ/∂dij < 0, as described in (9) of the main text, is
violated, a non-monotonic Vφ could also maximize the di-
vergence between two 1D distributions in principle. While
we do not adopt this approach for our experiments, here
we describe an added loss term to LRankMI to provide a
mechanism for incorporating this behaviour into the statis-
tics network.

We can penalize positive gradients at sampled points for
Vφ with a loss term we define as order loss:

Lorder =
1

||P||
∑

(zi,zj)∈P

max(0, ∂Vφ/∂dij)

+
1

||N ||
∑

(zi,zj)∈N

max(0, ∂Vφ/∂dij). (10)

Then, we can reformulate our total loss as follows:

Ltotal = LRankMI + λLorder. (11)

With this loss, we can softly constrain the parameter space
Φ to corresponding functions Vφ that are non-increasing.

Algorithm 1 Newton’s method for finding β.
Require: φt: Statistics network parameters at timestep t.
Require: β(0)

t : Initialization of β for Newton’s method.
Require: ε: Stopping criterion.
Require: maxIter: Maximum number of iterations.

1: ε(0) ←∞
2: n← 0
3: while |ε(n)|> ε and n < maxIter do
4: T ← Tφt(β

(n)
t )

5: g ← ∂T/∂β
(n)
t

6: ε(n) ← T/g

7: β
(n+1)
t ← β

(n)
t − ε(n)

8: n← n+ 1

9: return β(n)
t

4. Esimating β with Newton’s method
Algorithm 1 outlines our simple implementation of New-

ton’s method that is used to estimate the β value described
in Section 3.3 of the main manuscript. For all experi-
ments, we used the following settings: ε = 10−6 and
maxIter = 100.

5. Expanded quantitative results
An extended table of results for CUB200-2011 [17] and

CARS-196 [4] is shown in Tables 1 and 2, respectively.

6. Ablation study
In this section we present an ablation study that analyzes

the sensitivity of RankMI to its hyperparameters, i.e., statis-
tics network depth/width, alternating gradient descent ratio
(AGDR), batch size, and embedding dimensionality. The
study is based on CUB-200 [17]. Unless otherwise stated,
the statistics network depth/width is set to 5/128, AGDR is
1, embedding dimensionality is 128, batch size is 120, and
distance weighted sampling is used.

Table 3 analyzes the contribution of the depth and width
of the statistics network. As can be seen, changes in the net-
work size yield negligible differences in performance. Sim-
ilarly in Table 4, varying the AGDR does not impact per-
formance. In Table 5, varying the batch size, B, from 120,
180 to 240 results in a performance loss of up to 4% with
increasing B. Further evaluations suggest that this can be
mitigated if the number of classes on each GPU is fixed to
a constant value, three for our eight GPU evaluation setup.
This may be related to PyTorch’s batchnorm implementa-
tion, which uses different running statistics on each GPU.
Finally in Table 6, increasing the embedding dimension to
512 yields a 1% increase in R@1. Overall, RankMI is rela-
tively robust to hyperparameter settings across various axes
with the exception of batch size, which requires adjustments



Methods Recall@k NMI1 2 4 8 16
Triplet Semi-hard [10] 128O 42.6 55.0 66.4 77.2 - 55.4
LiftedStruct [13, 12] 64B 43.6 56.6 68.6 79.6 - 56.5
StructClustering [12] 64B 48.2 61.4 71.8 81.9 - 59.2
Proxy NCA [7] 64B 49.2 61.9 67.9 72.4 - 59.5
Binomial Deviance [14] 512G 50.3 61.9 72.6 82.4 88.8 -
N-pairs [11] 64G 51.0 63.3 74.3 83.2 - 60.4
DVML + Triplet2 + DWS [5] 512G 52.7 65.1 75.5 84.3 - 61.4
Histogram [14] 512G 52.8 64.4 74.7 83.9 90.4 -
Angular Loss [16] 512G 53.6 65.0 75.3 83.7 - 61.0
HDML + N-pairs [19] 512G 53.7 65.7 76.7 85.7 - 62.6
HTL [1] 512G 57.1 68.8 78.7 86.5 92.5 -
Margin [6] 128R 63.6 74.4 83.1 90.0 94.2 69.0

Ensemble

HDC [18] 384G 53.6 65.7 77.0 85.6 91.5 -
BIER [9] 512G 55.3 67.2 76.9 85.1 91.7 -
ABE-8 [3] 512G 60.6 71.5 79.8 87.4 - -

RankMI (Ours) 128R 66.5 77.3 85.5 91.1 95.1 72.8

Table 1. Recall@k and NMI on CUB200-2011 [17]. Baseline results are taken from the respective papers. The number after each citation
denotes the embedding dimensionality. The letter after each embedding dimension indicates the embedding network used. The letters R,
G, B, and O denote ResNet-50, GoogLeNet, BN-Inception and Other, respectively.

Methods Recall@k NMI1 2 4 8 16
Triplet Semi-hard [10] 128O 51.5 63.8 73.5 82.4 - 53.4
LiftedStruct [13, 12] 64B 53.0 65.7 76.0 84.3 - 56.9
StructClustering [12] 64B 58.1 70.6 80.3 87.8 - 59.0
Angular Loss [16] 512G 71.3 80.7 87.0 91.8 - 62.4
N-pairs [11] 64G 71.1 79.7 86.5 91.6 - 64.0
Proxy NCA [7] 64B 73.2 82.4 86.4 88.7 - 64.9
Margin [6] 128R 79.6 86.5 91.9 95.1 97.3 69.1
HTL [1] 512G 81.4 88.0 92.7 95.7 97.4 -
DVML + Triplet2 + DWS [5] 512G 82.0 88.4 93.3 96.3 - 67.6

Ensemble

HDC [18] 384G 73.7 83.2 89.5 93.8 96.7 -
BIER [9] 512G 78.0 85.8 91.1 95.1 97.3 -
ABE-8 [3] 512G 85.2 90.5 94.0 96.1 - -

RankMI (Ours) 128R 83.3 89.8 93.8 96.1 97.7 69.0

Table 2. Recall@k and NMI on CARS-196 [4]. Baseline results are taken from the respective papers. The number after each citation
denotes the embedding dimensionality. The letter after each embedding dimension indicates the embedding network used. The letters R,
G, B, and O denote ResNet-50, GoogLeNet, BN-Inception and Other, respectively.

to sampling.

7. Training complexity

We measure the overhead of the alternating gradient de-
scent (AGD) by timing the full iteration when the embed-
ding network, θ, and statistics network, φ, are updated.
Training steps for the statistics network are inexpensive and
take ∼0.35s, while updates to the embedding network take
∼1.28s on an NVIDIA Tesla M40 GPU. Thus, a single up-
date to the embedding network takes ∼1.27× wall-clock

time with an AGD ratio of 1 (1.3× with 8 GPUs). Since the
number of parameters ||φ||� ||θ|| (50k vs. 25.8m), addi-
tional memory cost is negligible. Hyperparameter β0 is not
sensitive, since it is updated before training starts in line 2 of
Algorithm 1. The cost of Newton’s algorithm for estimating
β1 from β0 is negligible.

8. Qualitative results

Figures 1 and 2 show t-SNE [15] visualizations of the
test set embeddings after training with RankMI on CUB-



depth width Recall@k
1 2 4 8 16

5 128 66.4 76.7 85.5 91.2 94.9
3 128 66.4 77.2 85.4 91.2 94.8
7 128 65.7 77.2 85.6 91.1 95.0
5 32 65.7 77.1 85.4 91.4 94.9
5 512 66.6 77.4 85.4 91.2 94.8

Table 3. Ablation study of the statistics network depth and width
on CUB-200 [17].

AGDR Recall@k
1 2 4 8 16

1 66.4 76.7 85.5 91.2 94.9
2 66.6 77.1 85.8 91.5 95.1
4 65.9 76.0 84.9 91.0 94.8

Table 4. Ablation study of the alternating gradient descent ratio
(AGDR) on CUB-200 [17].

batch size Recall@k
1 2 4 8 16

120 66.4 76.7 85.5 91.2 94.9
180 65.2 75.8 84.8 90.9 95.1
240 62.1 74.1 83.5 89.7 94.4

Table 5. Ablation study of the training batch size on CUB-200
[17].

embedding dim Recall@k
1 2 4 8 16

128 66.4 76.7 85.5 91.2 94.9
512 67.2 77.0 86.0 91.8 95.3

Table 6. Ablation study of the embedding dimensionality on CUB-
200 [17].

200-2011 [17] and CARS-196 [4] training sets, respec-
tively. Despite the subtle inter-class and large-class varia-
tions contained in the datasets, the embeddings form tight
clusters around semantic classes.
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Figure 1. t-SNE visualizations [15] of the CUB-200-2011 [17] evaluation set embeddings after training with RankMI on the training set.
Image blocks in the zoomed-in panels correspond to a single class.

Figure 2. t-SNE visualizations [15] of the CARS-196 [4] evaluation set embeddings after training with RankMI on the training set. Image
blocks in the zoomed-in panels correspond to a single class.


