
A. Hyperbolic Neural Networks
Linear layer. Assume we have a standard (Euclidean) lin-
ear layer x→ Mx+ b. In order to generalize it, one needs
to define the Möbius matrix by vector product:

M⊗c(x) :=
1√
c
tanh

(
‖Mx‖
‖x‖

arctanh(
√
c‖x‖)

)
Mx

‖Mx‖
,

(13)
if Mx 6= 0, and M⊗c(x) := 0 otherwise. Finally, for a
bias vector b ∈ Dnc the operation underlying the hyperbolic
linear layer is then given by M⊗c(x)⊕c b.

Concatenation of input vectors. In several architectures
(e.g., in siamese networks), it is needed to concatenate
two vectors; such operation is obvious in Euclidean space.
However, straightforward concatenation of two vectors
from hyperbolic space does not necessarily remain in hy-
perbolic space. Thus, we have to use a generalized version
of the concatenation operation, which is then defined in the
following manner. For x ∈ Dn1

c , y ∈ Dn2
c we define the

mapping Concat : Dn1
c × Dn2

c → Dn3
c as follows.

Concat(x,y) = M⊗c
1 x⊕c M⊗c

2 y, (14)

where M1 and M2 are trainable matrices of sizes n3 × n1
and n3 × n2 correspondingly. The motivation for this defi-
nition is simple: usually, the Euclidean concatenation layer
is followed by a linear map, which when written explicitly
takes the (Euclidean) form of Equation (14).

Multiclass logistic regression (MLR). In our experi-
ments, to perform the multiclass classification, we take ad-
vantage of the generalization of multiclass logistic regres-
sion to hyperbolic spaces. The idea of this generalization
is based on the observation that in Euclidean space logits
can be represented as the distances to certain hyperplanes,
where each hyperplane can be specified with a point of ori-
gin and a normal vector. The same construction can be used
in the Poincaré ball after a suitable analogue for hyperplanes
is introduced. Given p ∈ Dnc and a ∈ TpDnc \ {0}, such
an analogue would be the union of all geodesics passing
through p and orthogonal to a.

The resulting formula for hyperbolic MLR for K classes
is written below; here pk ∈ Dnc and ak ∈ Tpk

Dnc \ {0} are
learnable parameters.

p(y = k|x) ∝

exp

(
λcpk
‖ak‖√
c

arcsinh

(
2
√
c〈−pk ⊕c x,ak〉

(1− c‖ − pk ⊕c x‖2)‖ak‖

))
.

For a more thorough discussion of hyperbolic neural net-
works, we refer the reader to the paper [11].

B. Experiment details
Omniglot. As a baseline model, we consider the proto-
type network (ProtoNet). Each convolutional block con-
sists of 3×3 convolutional layer followed by batch normal-
ization, ReLU nonlinearity and 2 × 2 max-pooling layer.
The number of filters in the last convolutional layer corre-
sponds to the value of the embedding dimension, for which
we choose 64. The hyperbolic model differs from the base-
line in the following aspects. First, the output of the last
convolutional block is embedded into the Poincaré ball of
dimension 64 using the exponential map. Results are pre-
sented in Table 7. We can see that in some scenarios, in
particular for one-shot learning, hyperbolic embeddings are
more beneficial, while in other cases, results are slightly
worse. The relative simplicity of this dataset may explain
why we have not observed a significant benefit of hyper-
bolic embeddings. We further test our approach on more
advanced datasets.

Table 7: Few-shot classification accuracies on Omniglot. In
order to obtain Hyperbolic ProtoNet, we augment the stan-
dard ProtoNet with a mapping to the Poincaré ball, use hy-
perbolic distance as the distance function, and as the av-
eraging operator we use the HypAve operator defined by
Equation (10).

ProtoNet Hyperbolic ProtoNet

1-shot 5-way 98.2 99.0
5-shot 5-way 99.4 99.4
1-shot 20-way 95.8 95.9
5-shot 20-way 98.6 98.15

miniImageNet. We performed the experiments with two
different backbones, namely the previously discussed 4-
Conv model and ResNet18. For the former, embedding dim
was set to 1024 and for the latter to 512. For the one-shot
setting both models were trained for 200 epochs with Adam
optimizer, learning rate being 5 ·10−3 and step learning rate
decay with the factor of 0.5 and step size being 80 epochs.
For the 4-Conv model we used c = 0.01 and for ResNet18
we used c = 0.001. For 4-Conv in the five-shot setting we
used the same hyperparameters except for c = 0.005 and
learning rate decay step being 60 epochs. For ResNet18 we
additionally changed learning rate to 10−3 and step size to
40.

Caltech-UCSD Birds. For these experiments we used the
same 4-Conv architecture with the embedding dimensional-
ity being 512. For the one-shot task, we used learning rate
10−3, c = 0.05, learning rate step being 50 epochs and de-
cay rate of 0.8. For the five-shot task, we used learning rate



10−3, c = 0.01, learning rate step of 40 and decay rate of
0.8.

Person re-identification. We use ResNet50 [14] archi-
tecture with one fully connected embedding layer following
the global average pooling. Three embedding dimension-
alities are used in our experiments: 32, 64 and 128. For
the baseline experiments, we add the additional classifica-
tion linear layer, followed by the cross-entropy loss. For
the hyperbolic version of the experiments, we map the de-
scriptors to the Poincaré ball and apply multiclass logistic
regression as described in Section 4. We found that in both
cases the results are very sensitive to the learning rate sched-
ules. We tried four schedules for learning 32-dimensional
descriptors for both baseline and hyperbolic versions. The
two best performing schedules were applied for the 64 and
128-dimensional descriptors. In these experiments, we also
found that smaller c values give better results. We there-
fore have set c to 10−5. Based on the discussion in 4, our
hyperbolic setting is quite close to Euclidean. The results
are compiled in Table 6. We set starting learning rates to
3 · 10−4 and 6 · 10−4 for sch#1 and sch#2 correspond-
ingly and multiply them by 0.1 after each of the epochs 200
and 270.

C. Visualizations
For the visual inspection of embeddings we computed

projections of high dimensional embeddings obtained from
the trained few–shot models with the (hyperbolic) UMAP
algorithm [26] (see Figure 6). We observe that different
classes are neatly positioned near the boundary of the circle
and are well separated.



Figure 6: A visualization of the hyperbolic embeddings learned for the few–shot task. Left: 5-shot task on CUB. Right:
5-shot task on MiniImageNet. The two-dimensional projection was computed with the UMAP algorithm [26].


