Supplementary Material

M2m: Imbalanced Classification via Major-to-minor Translation

A. Details on the datasets

CIFAR-LT-10/100. CIFAR-10/100 datasets [7] consist of 60,000 RGB images of size 32 x 32, 50,000 for training and
10,000 for testing. Each image in the two datasets is corresponded to one of 10 and 100 classes, respectively. In our
experiments, we construct “synthetically long-tailed” variants of CIFAR-10/100, namely CIFAR-LT-10/100, respectively [1].
We hold-out 10% of the test set to construct a validation set, and use the remaining for testing. We use ResNet-32 [5] with a
mini-batch size 128, and set a weight decay of 2 x 10~%. We train the network for 200 epochs with an initial learning rate of
0.1. We follow the learning rate schedule used by [2] for fair comparison: the initial learning rate is set to 0.1, and we decay
it by a factor of 100 at 160-th and 180-th epoch. When the deferred scheduling [!] is used, e.g., DRS, DRW and our method,
it is applied after 160 epochs of standard training.

CelebA-5. CelebFaces Attributes (CelebA) dataset [9] is a multi-labeled face attributes dataset. It is originally composed
of 202,599 number of RGB face images with 40 binary attributes annotations per image. We port this CelebA to a 5-way
classification task by filtering only the samples with five non-overlapping labels about hair colors: namely, “blonde”, “black”,
“bald”, “brown”, and “gray”. This is in a similar manner as done in [I ]. We denote the resulting dataset by CelebA-5. We
pick out 50 and 100 samples per each class for validation and testing. We use ResNet-32 [5] with a mini-batch size 128, and
set a weight decay of 2 x 10~%. We train the network for 90 epochs with an initial learning rate of 0.1. We decay the learning
rate by 0.1 at epoch 30 and 60. When the deferred scheduling is used, it is applied after 60 epochs of standard training.

SUN397. Scene UNderstanding (SUN) [13] is a dataset for a scene categorization. It originally consists of 108,754 RGB
images which are labeled with 397 classes. For the inputs, center patches are first extracted and they are resized to 32x32.
We hold-out 10 and 40 samples per each class for validation and testing, respectively, as the dataset itself does not provide
any separated split for testing. We use pre-activation ResNet-18 [5] which roughly has 4 x more channels with a mini-batch
size 128, and set a weight decay of 2 x 10~*. We train the network for 90 epochs with an initial learning rate of 0.1. We
decay the learning rate by 0.1 at epoch 30 and 60. When the deferred scheduling is used, it is applied after 60 epochs of
standard training.

Twitter. Twitter [3] is a dataset for a part-of-speech (POS) tagging task in social media text with 25 classes. Each sample
is a pair of a token and a tag, e.g., “(books, common noun)” and “(#acl, hashtag)”, where each token is embedded into a
50-dimensional vector via a pre-defined word-embedding [6]. We discarded two classes with zero test samples and obtained
14,614 training samples with 23 classes. We use 2-layer fully-connected network with a hidden layer size of 256 and a ReLU
nonlinearity. We set a mini-batch size 64 and a weight decay of 5 x 10~5. We train the network for 15 epochs with an initial
learning rate 0.1 and decay the learning rate by 0.1 at epoch 10. When the deferred scheduling is used, it is applied after 10
epochs of standard training.

Reuters. Reuters [8] is a dataset for a text categorization task which predicts the subject of a given text. As an input, 1000-
dimensional bag-of-words vectors are given, which are processed from a news story document. It is originally composed of
52 classes, but we discarded the classes that have less than 5 test samples for a reliable evaluation, obtaining a subset of the
full dataset of 36 classes with 6436 training samples. We hold-out 10% of training samples to construct a validation set. We
use 2-layer fully-connected network with a hidden layer size of 256 and a ReLU nonlinearity. We set a mini-batch size 64
and a weight decay of 5 x 107°. We train the network for 15 epochs with an initial learning rate 0.1 and decay the learning
rate by 0.1 at epoch 10. When the deferred scheduling is used, it is applied after 10 epochs of standard training.

B. More results from ablation study

Generation from another classifier g. As mentioned, our method introduces another classifier g to generate synthetic
minority z* independently from the training classifier f. This is because using f itself instead of ¢ in the optimization
objective (2) would let the synthetic samples already confident in the target minority class to f, and this makes the overall
training process redundant. To further validate the importance of using g, we consider an ablation called “M2m-Self”:
instead of using g, “M2m-Self” uses f for generating minority samples. As reported in Table 1, one could immediately see
that M2m-Self only shows marginal improvement from DRS, which is much inferior than the original M2m.



Methods bACC (A) GM (A)

ERM-DRS 752402 (-3.96%)  73.9+02 (-5.01%)
M2m-Self 75.9+027 (—3.07%) 749105 (—3.73%)
M2m-No-Reject  77.4105 (-1.15%)  76.8+040 (-1.29%)
M2m (v = 0) 76.9019 (-1.79%)  76.4+020 (-1.80%)
M2m 78.3+016 (-000%) 77.8+016 (-OOO%)

M2m-Ensemble

78.51020 (+0.26%)

78.0x022 (+0.26%)

Table 1: Comparison of classification performance across various types of ablations. A indicates the relative gap from the
original result presented in “M2m”. All the values and error bars are mean and standard deviation across three random trials,
respectively.

Using multiple classifiers for generation. Since our method is not restricted to use the only one pre-trained classifier g
in the optimization (2), the multiple classifiers g; for ¢ = 1,...,m can be used to improve the quality of generation. To
verify the additional gain from multiple classifiers, we consider an ablation called “M2m-Ensemble”: use the ensemble of
the classifiers (m = 2) for generation instead of the single classifier. Here, we use the same architecture ResNet-32 for g; and
g2 and use a higher v due to the smoothed prediction from the ensemble. The results in Table 1 show that M2m-Ensemble
slightly perform better than M2m. It indicates that our method can benefit from the stronger classifier.

Rejection criteria. We also propose a sample rejection criteria to alleviate the risk of unreliable generation, possibly due to
a weak generalization of g. To verify the effect of this rejection criteria, we consider an ablation, namely “M2m-No-Reject”,
which does not use this rejection policy in training. In other words, all the generated samples are used to train f. The results
in Table 1 show that M2m-No-Reject performs significantly worse than M2m. This indeed confirms the gain from using the
proposed rejection criteria.

The effect of v. As specified in Algorithm 1 in the main paper, we set a threshold ~y to filter out the synthetic samples
which the generation objective is not sufficiently minimized, mainly due to the limited budget. To evaluate the practical
effectiveness of using 7y, here we consider an ablation that this thresholding is not used, equivalently when v = oo. As
reported in Table 1, we indeed observe a performance degradation by not using . This reveals that the confidence level in g
affects the final quality of the generation.
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Figure 1: The class-wise dis-
tribution of ImageNet-LT.

Table 2: Comparison of classification performance on ImageNet-LT. All the values and
error bars are mean and standard deviation across three random trials, respectively.

C. Results on ImageNet-LT

We additionally evaluate our method on ImageNet-LT [10] dataset, a subset of ImageNet dataset [12] with a synthetic
imbalance following the Pareto distribution of the power o = 6. It is composed of 115,846 training samples with 1,000
categories, 1,280 images in the maximal class and 5 images in the minimal class. A more detailed distribution is presented
in Figure 1. We use the randomly-resized cropping and the horizontal flipping as a data augmentation, and all the images
are resized to 128x128. We hold-out 20 samples per class randomly from the original ImageNet training set to form a



validation set, and the original (roughly balanced) ImageNet validation set is used for testing. We use ResNet-50 [4] with a
mini-batch size 256 and set a weight decay of 10~%. We train the network for 200 epochs with an initial learning rate of 0.1
and it is decayed by 0.1 at epoch 160 and 180. When the deferred scheduling is used, e.g., DRS, DRW and our method, it
is applied after 160 epochs of standard training. We evaluate our method with followings which show the best performance
among the baselines in the experiments in the main paper: (¢) ERM-DRS and (b) LDAM-DRW [1]. We report the balanced
accuracy (bACC) and the geometric mean scores (GM). As reported in Table 2, our method, M2m, significantly outperforms
the baselines. In the case of ERM loss, compare to DRS, M2m shows 3.43 % and 4.75 % relative gains in bACC and GM,
respectively. Furthermore, with a margin-based loss function LDAM, the improvement is much enlarged.
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