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Stage SlowOnly-34 SlowOnly-50 T × S2

clip - 8× 2242

conv1
1× 72, 64
stride 1,22

8× 1122

pool1
1× 32,max

stride 1,22
8× 562

res2

[
1× 32, 64
1× 32, 64

]
×3

 1× 12, 64
1× 32, 64
1× 12, 256

×3 8× 562

res3

[
1× 32, 128
1× 32, 128

]
×4

1× 12, 128
1× 32, 128
1× 12, 512

×4 8× 282

res4

[
3× 32, 256
3× 32, 256

]
×6

 3× 12, 256
1× 32, 256
1× 12, 1024

×6 8× 142

res5

[
3× 32, 512
3× 32, 512

]
×3

 3× 12, 512
1× 32, 512
1× 12, 2048

×3 8× 72

global average pool, fc -

Table A1. An instantiation of SlowOnly model.

A. Architecture of SlowOnly Model

Architectural details of SlowOnly are specified in Table
A1. One can find kernel size, number of residual blocks,
number of channels, strides, and feature map size in each
stage in the table.

B. Additional Details of Training

B.1. Kinetics-400 and Mini-Kinetics Stochastic gra-
dient descent (SGD) with momentum is used to optimize
the model. Cosine annealing [2] with initial learning rate
0.2 is used for the learning rate scheduler. We also apply
warm-up scheme that starts from 0.1 during the first 20
epochs. Momentum and weight decay are set to 0.9 and
0.0001 respectively. Dropout is applied before the last fully
connected layer with a drop rate 0.5. The model is trained
for 250 epochs with 128 batch size using 4 GPUs otherwise
specified.

For Mini-Kinetics, we train SlowOnly-50 with batch size
64 due to the limitation of computational resources.

For Kinetics-400, we adopt distributed and mixed preci-
sion training in order to train SlowOnly-50 model with large
batch size, 128.

Since official code1 of SlowFast Network (SlowFast)
was not released by the time we experimented, we imple-
mented it in PyTorch with reference to unofficial imple-
mentation2. There were several differences between official
code and our implementation which can affect the conver-
gence of the model; 1) BN and ReLU at the lateral connec-
tion, 2) initialization of gamma in BN to 0, 3) weight decay
of BN parameters to 0.0, and 4) small initial learning rate
of warm-up scheme. We use SlowFast model with T = 8,
τ = 8 and α = 4. We set batch size 64 with 4 GPUs and
learning rate 0.1. RMS is only applied in Slow branch.

For CSN, we implemented it with reference to an Caffe2
implementation3. Since CSN gradually aggregates tempo-
ral dimension through the stages, the temporal dimension
of the feature map at the latter stages can be less than 3.
Therefore, we use RMS with [1,3,3] kernel in CSN.

B.2. Something-Something-v2 For Something-v2, we
finetune SlowFast for 40 epochs with initial learning rate
0.01. We use step decay schedule which reduces learning
rate by 1/10 at 24 and 30 epochs. According to the training
graph, we found that the model easily overfit to the dataset
so we enhance the input augmentation, random resized
crop, by cropping image patches from the range between
15% to 75% of the image area.

B.3. CIFAR100 and ImageNet For CIFAR-100, ResNet-
110 is chosen as the baseline model and trained for 300
epochs. We decay learning rate by 1/10 at 150 and 225
epochs. The initial learning rate set to 0.2 with batch size
1024. We run 3 times with different initialization and re-
port average of the performance. RMS is applied in the last
stage among three residual stages.

For ImageNet experiment, we train ResNet-50 for 300
epochs following [4]. We also found that large number of
epochs requires for RMS to converge. We adopted cosine

1https://github.com/facebookresearch/SlowFast
2https://github.com/r1ch88/SlowFastNetworks
3https://github.com/facebookresearch/VMZ
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annealing learning rate schedule with 5 warm-up epochs.
The initial learning rate set to 0.4 with batch size 1024.
RMS is applied in res4 and res5 stages as 3D models.

C. Details of Gaussian Filter

The Gaussian kernel can be formulated as
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where xj , yj , and tj are discrepancy from the center
of the kernel along x, y, and t dimension and σf is a
hyperparamter that determines the standard deviation of the
Gaussian kernel.

D. Details of Other Regularizations

Like RMS, RandomDrop [1] and ShakeDrop [3] mul-
tiply a random coefficient on feature during a forward
computation. Apart from this similarity, RMS has several
distinctive characteristics from RadomDrop and Shake-
Drop. RMS varies a feature in a residual branch with
a continuous random variable, whereas RandomDrop
stochastically drops lth residual branch by the discrete
random variable bl from a Bernoulli distribution with
survival probability P (bl = 1) = pl as represented in the
following equation.

y =

{
blx, in train
E[bl]x, in test.

(2)

On the other hand, ShakeDrop uses two continuous ran-
dom variables to perturb a residual branch. When bl = 0,
ShakeDrop multiplies α during a forward phase and β dur-
ing a backward phase, respectively:

y =


(bl + α− blα)x, in train forward
(bl + β − blβ)x, in train backward
E[bl + α− blα]x, in test.

(3)

In [3], ShakeDrop shows the best performance when α = 0
and β ∼ U(0, 1) sampled for each mini-batch (batch-level)
or for each pixel (pixel-level) for ResNet. On the other
hand, RMS samples a random variable, α for each video
clip (clip-level).

Cutmix [4] is a recently proposed input augmentation
method which mixes two randomly chosen images x1 and
x2 with their corresponding labels y1 and y2 as

x̃ = M� x1 + (1−M)� x2,
ỹ = λy1 + (1− λ)y2,

(4)

where binary mask M ∈ {0, 1}W×H decides where to cut
and paste the image patch and� denotes element-wise mul-
tiplication. The size of the image patch is determined by the
combination ratio λ which is sampled from the beta distri-
bution Beta(1, 1). We recommend readers to refer to the
corresponding paper for further details.

For our experiment, We trained all methods with their
best hyper-parameter settings reported in each correspond-
ing paper. However, we could not make ShakeDrop con-
verge with their best reported hyper-parameter on Mini-
Kinetics dataset. So we decrease the regularization effect
by reducing the range of β by half. For Cutmix, we simply
extend the method to 3D by adopting identical crop region
to every time steps.
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