
Supplementary File: Transfer Learning from Synthetic to Real-Noise Denoising

with Adaptive Instance Normalization

1. Transfer Learning from AWGN

We present the results of transfer-learned denoiser where

AINDNet is pre-trained with AWGN and adapted to real

noise (RN). For the precise comparison, we report perfor-

mance of three denoisers in Table 1 according to training

sets and learning methods:

• AINDNet(AWGN): AINDNet is trained with AWGN

images.

• AINDNet(AWGN)+TF1: AINDNet(AWGN) is trans-

fer learned with a single real noisy image.

• AINDNet(AWGN)+TF: AINDNet(AWGN) is transfer

learned with full real noisy images (320 images).

It can be seen that proposed transfer learning scheme sig-

nificantly improves the performance of synthetic noise (SN)

denoisers including AWGN denoiser when the input is lim-

ited.

Table 1: Average PSNR of the denoised images on the

SIDD validation set. 1 denotes that the number of real train-

ing noisy image is one.

Method PSNR

RIDNet [2] 38.71

AINDNet(S) 35.21

AINDNet(AWGN) 26.25

AINDNet(R) 38.81

AINDNet(AWGN)+TF 38.82

AINDNet+TF 38.90

AINDNet(R)1 30.36

AINDNet(AWGN)+TF1 31.76

AINDNet+TF1 36.19

2. More Noise Level Estimation Results

We evaluate the accuracy of the proposed noise level

estimator, where the input images are simultaneously cor-

rupted with more diverse signal-dependent noise levels σs

and signal-independent noise levels σc. As presented in

Table 2, the proposed noise level estimator achieves bet-

ter accuracy with lower standard deviations of the errors in

most cases. Furthermore, the proposed noise level estima-

tor predicts quite accurate estimates when the images are

corrupted with high σs and σc.

Table 2: Average MAE and error STD for the images from

Kodak24 where the inputs are corrupted by heteroscedastic

Gaussian including in-camera pipeline.

Method FCN [6] Ours

(σs, σc) MAE STD MAE STD

(0.04, 0.00) 0.009 0.007 0.022 0.014

(0.04, 0.02) 0.029 0.007 0.015 0.011

(0.04, 0.04) 0.050 0.006 0.009 0.009

(0.04, 0.06) 0.070 0.007 0.016 0.009

(0.08, 0.00) 0.018 0.013 0.022 0.014

(0.08, 0.02) 0.039 0.013 0.014 0.012

(0.08, 0.04) 0.059 0.014 0.012 0.011

(0.08, 0.06) 0.076 0.013 0.020 0.010

(0.12, 0.00) 0.029 0.020 0.020 0.014

(0.12, 0.02) 0.052 0.021 0.015 0.014

(0.12, 0.04) 0.071 0.020 0.017 0.014

(0.12, 0.06) 0.087 0.020 0.030 0.014

(0.16, 0.00) 0.039 0.027 0.021 0.018

(0.16, 0.02) 0.065 0.028 0.020 0.019

(0.16, 0.04) 0.076 0.027 0.021 0.019

(0.16, 0.06) 0.098 0.028 0.040 0.021

Average 0.054 0.017 0.020 0.014

# params 29.5 K 29.7 K

3. More Visualized Results

We present more visualized comparisons on three test

sets: SIDD, RNI15 and DND. We compare proposed meth-

ods with conventional methods i.e. KSVD [1], BM3D [5],

MLP [3], TNRD [4], DnCNN [8], TWSC [7], CBDNet [6],

and RIDNet [2].

We visualize the results of the proposed methods and

previous methods in Fig. 1 and 2 where the noisy images

are achieved from SIDD. It can be seen in Fig. 1 that AIND-

Net(S) and AINDNet+TF infer edge preserved results with
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clearer characters than conventional methods. Although the

results of AINDNet(S) look good with more vivid color

and edge preservation, it infers some color distortion. On

the other hand, AINDNet+TF retains color information and

also processes severe color-changing regions neatly, where

other methods produce mosaic-like patterns. The visual

comparisons on RNI15 are also shown in Fig. 3. AIND-

Net(S) and AINDNet+TF infer edge preserved results, so

denoised characters and hair are more visually pleasing than

in other methods. Lastly, we compare proposed methods

with other methods on DND where quantitative results and

processed images can be achieved from DND sites. As pre-

sented in Fig. 4 and 5, AINDNet(S) and AINDNet+TF get

the best quantitative results and also achieve well-denoised

images. Specifically, AINDNet(S) and AINDNet+TF re-

move noises while preserving the edges of the engraving

and the textures in Fig. 4. From these visual comparisons,

including the ones in the main manuscript, we believe that

AINDNet(S) can infer edge-preserved results by training a

lot of training set, and this learned knowledge is effectively

transferred to AINDNet+TF.

4. Ablation Study

We demonstrate the effectiveness of noise level estima-

tor for training with S . We present performance of noise

level estimators combined with reconstruction network in

Table 3 with different objective function. Remember that

Lms-asymm can generate smoothed outputs, so LTV is ex-

cluded when using Lms-asymm. We find that state-of-the-

art training scheme (FCN + Lasymm + LTV ) infers infe-

rior performance than proposed training scheme (Ours +

Lms-asymm). Moreover, the proposed training scheme also

surpasses internal variation (Ours + L1 + LTV ).

Table 3: Investigation of noise level estimator and estima-

tion loss when denoisers are trained with SN data. The

quantitative results (in average PSNR (dB)) are reported on

DND test dataset and SIDD validation dataset.

Method DND SIDD

FCN + Lasymm + LTV 39.51 34.90

Ours + L1 + LTV 39.45 35.08

Ours + Lms-asymm 39.53 35.19

We further investigate the relation between update pa-

rameters and performance in the transfer learning phase.

For the precise comparison, we compare three variants by

freezing each update parameter in Table 4:

• Ours-AIN: AIN module is not updated in transfer

learning stage.

• Ours-Estimator: Noise level estimator is not updated

in transfer learning stage.

• Ours-LastConv: Last convolution is not updated in

transfer learning stage.

It can be seen that proposed updating the noise level estima-

tor, and last convolution contribute 0.1 - 0.2 dB performance

gain respectively. Fixing AIN module parameter presents

even worse performance than the SN denoiser.

Table 4: Investigation of update parameters when denoisers

are transfer-learned with RN data. The quantitative results

(in average PSNR (dB)) are reported on SIDD validation

dataset.

Method PSNR

Ours-AIN 34.60

Ours-Estimator 38.71

Ours-LastConv 38.75

AINDNet(S) 35.21

AINDNet+TF 38.90
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(a) Noisy Image (b) DnCNN (c) CBDNet (d) RIDNet

(e) AINDNet(S) (f) AINDNet(R) (g) AINDNet+RT (h) AINDNet+TF

Figure 1: A real noisy image from SIDD, and the comparison of the results.

(a) Noisy Image (b) DnCNN (c) CBDNet (d) RIDNet

(e) AINDNet(S) (f) AINDNet(R) (g) AINDNet+RT (h) AINDNet+TF

Figure 2: A real noisy image from SIDD, and the comparison of the results.



(a) Noisy Image (b) DnCNN (c) CBDNet (d) RIDNet

(e) AINDNet(S) (f) AINDNet(R) (g) AINDNet+RT (h) AINDNet+TF

Figure 3: A real noisy image from RNI15, and the comparison of the results.



(a) Noisy Image / PSNR (b) KSVD / 35.77 dB (c) BM3D / 33.50 dB (d) MLP / 33.60 dB

(e) TNRD / 31.64 dB (f) TWSC / 36.48 dB (g) CBDNet / 36.27 dB (h) RIDNet / 36.74 dB

(i) AINDNet(S) / 37.15 dB (j) AINDNet(R) / 37.60 dB (k) AINDNet+RT / 37.49 dB (l) AINDNet+TF / 38.09 dB

Figure 4: A real noisy image from DND, and the comparison of the results.



(a) Noisy Image / PSNR (b) KSVD / 28.78 dB (c) BM3D / 23.95 dB (d) MLP / 23.01 dB

(e) TNRD / 23.17 dB (f) TWSC / 32.97 dB (g) CBDNet / 31.40 dB (h) RIDNet / 34.30 dB

(i) AINDNet(S) / 34.63 dB (j) AINDNet(R) / 33.90 dB (k) AINDNet+RT / 32.62 dB (l) AINDNet+TF / 33.39 dB

Figure 5: A real noisy image from DND, and the comparison of the results.


