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Appendix

This appendix contains additional implementation details
(Sec. A) which may be helpful for reproducing our results.
Sec. B provides additional details about the datasets pre-
sented and used in our paper. In Sec. C, we show additional
details complementing our experiments shown in the paper.

A. Implementation Details
In Alg. 1, we present the CONSAC algorithm in another

form, in addition to the description in Sec. 3 of the main
paper, for ease of understanding. A list of all user definable
parameters and the settings we used in our experiments is
given in Tab. 1.

Algorithm 1 CONSAC
Input: Y – set of observations, w – network parameters
Output: M̂ – multi-hypothesis
P ← ∅
for i← 1 to P do
M← ∅
s← 0
for m← 1 to M do
H ← ∅
for s← 1 to S do

Sample a minimal set of observations
{y1, . . . ,yC} with y ∼ p(y|s;w).

h← fS({y1, . . . ,yC})
H ← H∪ {h}

end
ĥ← arg maxh∈H gs(h,Y,M)

M←M∪ {ĥ}
s← maxĥ∈M gy(Y, ĥ)

end
P ← P ∪ {M}

end
M̂ ← arg maxM∈P gm(M,Y)
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learning rate 10−4 2 · 10−6

batch size B 16 1
batch normalisation yes no
epochs 400 100
inlier threshold τ 10−3 10−4

IMR weight κ 10−2 10−2

observations per scene |Y| 256 256
number of instances M 3 6
single-instance samples S 2 2
multi-instance samples P 2 2
sample count K 4 8

te
st

inlier threshold τ 10−3 10−4

inlier thresh. (selection) θ — 3 · 10−3

inlier cutoff (selection) Θ — 6
observations per scene |Y| variable
number of instances M 6 6
single-instance samples S 32 100
multi-instance samples P 32 100
EM iterations 10 10
EM standard deviation σ 10−8 10−9

Table 1: User definable parameters of CONSAC and the
values we chose for our experiments on vanishing point es-
timation and homography estimation. We distinguish be-
tween values used during training and at test time. Mathe-
matical symbols refer to the notation used either in the main
paper or in this supplementary document.

A.1. Neural Network

We use a neural network similar to PointNet [20] and
based on [4, 28] for prediction of conditional sampling
weights in CONSAC. Fig. 1 gives an overview of the ar-
chitecture. Observations y ∈ Y , e.g. line segments or fea-
ture point correspondences, are stacked into a tensor of size
D×|Y|× 1. Note that the size of the tensor depends on the
number of observations per scene. The dimensionalityD of



Figure 1: CONSAC neural network architecture used for all experiments. We stack observations Y , e.g. line segments or
point correspondences (not an image), and state s into a tensor of size (D + 1)× |Y| × 1, and feed it into the network. The
network is composed of linear 1 × 1 convolutional layers interleaved with instance normalisation [24], batch normalisation
[9] and ReLU [6] layers which are arranged as residual blocks [7]. Only using 1 × 1 convolutions, the network is order
invariant w.r.t. observations Y . The architecture is based on [4, 28].

each observation y is application specific. The current state
s contains a scalar value for each observation and is hence a
tensor of size 1×|Y|×1. The input of the network is a con-
catenation of observations Y and state s, i.e. a tensor of size
(D+1)×|Y|×1. After a single convolutional layer (1×1,
128 channels) with ReLU [6] activation function, we apply
six residual blocks [7]. Each residual block is composed of
two series of convolutions (1 × 1, 128 channels), instance
normalisation [24], batch normalisation [9] (optional) and
ReLU activation. After another convolutional layer (1 × 1,
1 channel) with sigmoid activation, we normalise the out-
puts so that the sum of sampling weights equals one. Only
using 1× 1 convolutions, this network architecture is order
invariant w.r.t. observations Y . We implement the architec-
ture using PyTorch [19] version 1.2.0.

A.1.1 Training Procedure

We train the neural network using the Adam [11] optimiser
and utilise a cosine annealing learning rate schedule [13].
We clamp losses to a maximum absolute value of 0.3 in or-
der to avoid divergence caused by large gradients resulting
from large losses induced by poor hypothesis samples.

Number of Observations In order to keep the number
of observations |Y| constant throughout a batch, we sam-
ple a fixed number of observations from all observations of
a scene during training. At test time, all observations are
used.

Pseudo Batches During training, we sample P multi-
hypotheses M, from which we select the best multi-
hypothesis M̂ for each set of input observations Y within

a batch of size B. To approximate the expectation of our
training loss (see Sec. 3.2 of the main paper), we repeat
this process K times, to generate K samples of selected
multi-hypotheses M̂ for each Y . We generate each multi-
hypothesis M by sequentially sampling S single-instance
hypotheses h and selecting the best one, conditioned on a
state s. The state s varies between these innermost sam-
pling loops, since we compute s based on all previously se-
lected single instance hypotheses ĥ of a multi-hypothesis
M. Because s is always fed into the network alongside
observations Y , we have to run P · K forward passes
for each batch. We can, however, parallelise these passes
by collating observations and states into a tensor of size
P×K×B×(D+1)×|Y|. We reshape this tensor so that it
has size B∗× (D+ 1)× |Y| with an effective pseudo batch
size B∗ = P ·K ·B, in order to process all samples in par-
allel while using the same neural network weights for each
pass within B∗. This means that sample sizes P and K are
subject to both time and hardware memory constraints. We
observe, however, that small sample sizes during training
are sufficient in order to achieve good results using higher
sample sizes at test time.

Inlier Masking Regularisation For self-supervised
training, we multiply the inlier masking regularisation
(IMR) term `im (cf. Sec. 3.2.2 in the main paper) with a
factor κ in order to regulate its influence compared to the
regular self-supervision loss `self , i.e.:

` = `self + κ · `im (1)

A.2. Scoring Functions

In order to gauge whether an observation y is an inlier of
model instance h, we utilise a soft inlier function adapted



Figure 2: Visualisation of the angle α used for the vanishing
point estimation residual function r(y,h).

from [3]:

gi(y,h) = 1− σ(βr(y,h)− βτ) , (2)

with inlier threshold τ , softness parameter β = 5τ−1, a
task-specific residual function r(y,h) (see Sec. A.3 for de-
tails), and using the sigmoid function:

σ(x) =
1

1 + e−x
. (3)

The multi-instance scoring function gm, which we use to
select the best muti-hypothesis, i.e. hypothesis of multiple
model instances M̂ = {ĥ1, . . . , ĥM}, from a pool of multi-
instance hypotheses P = {M1, . . . ,MP }, counts the joint
inliers of all models in a multi-instance:

gm(M,Y) =
∑
y∈Y

max
h∈M

gi(y,h) . (4)

The single instance scoring function gs, which we use
for selection of single model instances h given the set of
previously selected model instancesM, is a special case of
the multi-instance scoring function gm:

gs(h,Y,M) = gm(M∪ {h},Y) . (5)

A.3. Residual Functions

Line Fitting For the line fitting problem, each obser-
vation is a 2D point in homogeneous coordinates y =

(x y 1)
T, and each model is a line in homogeneous coordi-

nates h = 1
‖(n1 n2)‖ (n1 n2 d)

T. We use the absolute point-
to-line distance as the residual:

r(y,h) = |yTh| . (6)

Vanishing Point Estimation Observations y are given by
line segments with start point p1 = (x1 y1 1)

T and end
point p2 = (x2 y2 1)

T, and models are vanishing points
h = (x y 1)

T. For each line segment y, we compute the
corresponding line ly = p1 × p2 and the centre point
pc = 1

2 (p1 + p2). As visualised by Fig. 2, we define the
residual via the cosine of the angle α between ly and the
constrained line lc = h × pc, i.e. the line connecting the
vanishing point with the centre of the line segment:

r(y,h) = 1− cosα = 1−
|lTy,1:2lc,1:2|
‖ly,1:2‖‖lc,1:2‖

. (7)

Figure 3: Line fitting: we show examples from the syn-
thetic dataset we used to train CONSAC on the line fitting
problem. Each scene consists of four lines placed at ran-
dom, with points sampled along them, perturbed by Gaus-
sian noise and outliers. Cyan = ground truth lines.

Homography Estimation Observations y are given by
point correspondences p1 = (x1 y1 1)

T and p2 =

(x2 y2 1)
T, and models are plane homographies h = H3×3

which shall map p1 to p2. We compute the symmetric
squared transfer error:

r(y,h) = ‖p1 − p′1‖2 + ‖p2 − p′2‖2 , (8)

with p′2 ∝ Hp1 and p′1 ∝ H−1p2.

B. Dataset Details and Analyses
B.1. Line Fitting

For training CONSAC on the line fitting problem, we
generated a synthetic dataset of 10000 scenes. Each scene
consists of four lines placed at random within a {0, 1} ×
{0, 1} square. For each line, we randomly define a line seg-
ment with a length of 30 − 100% of the maximum length
of the line within the square. Then, we randomly sample
40 − 100 points along the line segment and perturb them
by Gaussian noise N ∼ (0, σ2), with σ ∈ (0.007, 0.008)
sampled uniformly. Finally, we add 40 − 60% outliers via
random uniform sampling. Fig. 3 shows a few examples
from this dataset.

For evaluation, we use the synthetic stair4, star5 and
star11 scenes from [23], which were also used by [2]. As
Fig. 4 shows, each scene consists of 2D points forming four,



Figure 4: Line fitting: we use the synthetic stair4 (left),
star5 (middle) and star11 (right) scenes from [23], which
were also used by [2], in our experiments.

five or eleven line segments. The points are perturbed by
Gaussian noise (σ = 0.0075) and contain 50 − 60% out-
liers.

B.2. Vanishing Point Estimation

NYU-VP In Fig. 5 (top), we show a histogram of the
number of vanishing points per image in our new NYU-
VP dataset. In addition, we show a few example images
for different numbers of vanishing points. NYU-VP solely
consists of indoor scenes.

YUD+ In Fig. 5 (bottom), we show a histogram of the
number of vanishing points per image in our new YUD+
dataset extension. By comparison, the original YUD [5]
contains exactly three vanishing point labels for each of the
102 scenes. YUD contains both indoor and outdoor scenes.

B.3. Homography Estimation

For self-supervised training for the task of homography
estimation, we use SIFT [14] feature correspondences ex-
tracted from the structure-from-motion scenes of [8, 22,
27]. Specifically, we used the outdoor scenes Buckingham,
Notredame, Sacre Coeur, St. Peter’s and Reichstag from
[8], Fountain and Herzjesu from [22], and 16 indoor scenes
from SUN3D [27]. We use the SIFT correspondences com-
puted and provided by Brachmann and Rother [4], and dis-
card suspected gross outliers with a matching score ratio
greater than 0.9. As this dataset is imbalanced in the sense
that some scenes contain significantly more image pairs
than others – for St. Peter’s we have 9999 image pairs,
but for Reichstag we only have 56 – we apply a rebalanc-
ing sampling during training: instead of sampling image
pairs uniformly at random, we uniformly sample one of the
scenes first, and then we sample an image pair from within
this scene. This way, each scene is sampled during training
at the same rate. During training, we augment the data by
randomly flipping all points horizontally or vertically, and
shifting and scaling them along both axes independently by
up to ±10% of the image width or height.

C. Additional Experimental Results
C.1. Line Fitting

Sampling Efficiency In order to analyse the efficiency of
the conditional sampling of CONSAC compared to a Se-
quential RANSAC, we computed the F1 score w.r.t. esti-
mated model instances on the stair4, star5 and star11 line
fitting scenes from [23] for various combinations of single-
instance samples S and multi-instance samples P . As Fig. 6
shows, CONSAC achieves higher F1 scores with fewer hy-
potheses on stair4 and star5. As we trained CONSAC on
data containing only four line segments, while star5 depicts
five lines, this demonstrates that CONSAC is able to gen-
eralise beyond the number of model instances it has been
trained for. On star11, which contains eleven lines, it does
not perform as well, suggesting that this generalisation may
not extend arbitrarily beyond numbers of instances CON-
SAC has been trained on. In practice, however, our real-
world experiments on homography estimation and vanish-
ing point estimation show that it is sufficient to simply train
CONSAC on a reasonably large number of instances in or-
der to achieve very good results.

Sampling Weights Throughout Training We looked at
the development of sampling weights as neural network
training progresses, using star5 as an example. As Fig. 7
shows, sampling weights are randomly – but not uniformly
– distributed throughout all instance sampling steps before
training has begun. At 1000 iterations, we observe that the
neural network starts to focus on different regions of the
data throughout the instance sampling steps. From thereon,
this focus gets smaller and more accurate as training pro-
gresses. After 100000 iterations, the network has learned to
focus on points mostly belonging to just one or two true line
segments.

C.2. Vanishing Point Estimation

Evaluation Metric We denote ground truth VPs of an
image by V = {v1, . . . ,vM} and estimates by V̂ =
{v̂1, . . . , v̂N}. We compute the error between two particu-
lar VP instances via the angle e(v, v̂) between their corre-
sponding directions in 3D using camera intrinsics K:

e(v, v̂) = arccos

∣∣∣(K−1v)T K−1v̂
∣∣∣

||K−1v| | · ||K−1v̂| |
. (9)

We use this error to define the cost matrix C: Cij =
e(vi, v̂j) in Sec. 5.2.1 of the main paper.

Results For vanishing point estimation, we provide recall
curves for errors up to 10◦ in Fig. 8 for our new NYU-
VP dataset, for our YUD+ dataset extension, as well as the
original YUD [5]. We compare CONSAC with the robust



Figure 5: Vanishing points per scene: Histograms showing the numbers of vanishing point instances per image for our new
NYU-VP dataset (top) and our YUD+ dataset extension (bottom), in addition to a few example images. We illustrate the
vanishing points present in each example via colour-coded line segments.
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Figure 6: Line fitting: Using the stair4 (top), star5 (mid-
dle) and star11 (bottom) line fitting scenes from [23], we
compute the F1 scores for various combinations of single-
instance samples S (abscissa) and multi-instance samples P
(ordinate) and plot them as a heat map. We compare CON-
SAC (left) with Sequential RANSAC (right). Magenta =
low, cyan = high F1 score.

Figure 7: Line fitting: We show how the sampling weights
at each instance sampling step develop as neural net-
work training progresses, using the star5 line fitting scene
from [23] as an example. Each row depicts the sam-
pling weights used to sample the eventually selected best
multi-hypothesis M̂. Top to bottom: training iterations
0 − 100000. Left to right: model instance sampling steps
1− 5. Sampling weights: Blue = low, white = high.

multi-model fitting approaches T-Linkage [15], Sequential
RANSAC [25], Multi-X [1], RPA [16] and RansaCov [17],
as well as the task-specific vanishing point estimators of
Zhai et al. [29], Simon et al. [21] and Kluger et al. [12].
We selected the result with the median area under the curve
(AUC) of five runs for each method. CONSAC does not
find more vanishing points within the 10◦ range than state-
of-the-art vanishing point estimators, indicated by similar



NYU-VP
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Figure 8: Vanishing point estimation: Recall curves for
errors up to 10◦ for all methods which we considered in our
experiments. We selected the result with the median AUC
out of five runs for each method. Robust estimators are rep-
resented with solid lines, task-specific VP estimators with
dashed lines. Top: Results on our new NYU-VP dataset.
Middle: Results on our new YUD+ dataset extension. Bot-
tom: Results on the original YUD [5].

no. of CONSAC-S MCT [18] Sequential
planes RANSAC

barrsmith 2 2.07 11.29 12.95
bonhall 6 16.63 29.29 20.43
bonython 1 0.00 2.42 0.00
elderhalla 2 4.39 21.41 16.36
elderhallb 3 11.69 20.31 18.67
hartley 2 2.94 15.19 9.38
johnsona 4 14.48 18.77 28.04
johnsonb 6 19.17 33.87 27.46
ladysymon 2 2.95 16.46 3.80
library 2 1.21 14.79 11.35
napiera 2 2.72 21.32 11.66
napierb 3 6.72 16.83 21.24
neem 3 2.74 14.36 14.44
nese 2 0.00 12.83 0.47
oldclass. 2 1.69 15.20 1.32
physics 1 0.00 3.21 0.00
sene 2 0.40 4.80 2.00
unihouse 5 8.84 34.10 10.69
unionhouse 1 0.30 1.51 1.51

average 5.21 16.21 11.14

Table 2: Homography estimation: Misclassification errors
(in %, average over five runs) for all homography estimation
scenes of AdelaideRMF [26].

recall values at 10◦. However, it does estimate vanishing
points more accurately on NYU-VP and YUD+, as the high
recall values for low errors (< 4◦) show. On YUD [5],
CONSAC achieves similar or slightly worse recall. Com-
pared to other robust estimators, however, CONSAC per-
forms better than all methods on all datasets across the
whole error range. In Fig. 10, we show additional quali-
tative results from the NYU-VP dataset, and in Fig. 11, we
show additional qualitative results from the YUD+ dataset.

C.3. Homography Estimation

We provide results computed on AdelaideRMF [26] for
all scenes seperately. In Fig. 9, we compare CONSAC-S
– i.e. CONSAC trained in a self-supervised manner – to
Progressive-X [2], Multi-X [1], PEARL [10], RPA [16],
RansaCov [17] and T-Linkage [15]. We adapted the graph
directly from [2]. CONSAC-S achieves state-of-the-art per-
formance on 13 of 19 scenes. Tab. 2 compares CONSAC-S
with MCT [18] and Sequential RANSAC. We computed re-
sults for MCT using code provided by the authors, and used
our own implementation for Sequential RANSAC, since no
results obtained using the same evaluation protocol (aver-
age over five runs) were available in previous works. In
Fig. 12, we show additional qualitative results from the
AdelaideRMF [26] dataset.
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Figure 9: Homography estimation: Misclassification errors (in %, average over five runs) for all homography estimation
scenes of AdelaideRMF [26]. Graph adapted from [2].
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Figure 10: Three qualitative examples for VP estimation with CONSAC on our NYU-VP dataset. For each example we show
the original image, extracted line segments, line assignments to ground truth VPs, and to final estimates in the first row. In the
second and third row, we visualise the generation of the multi-hypothesis M̂ eventually selected by CONSAC. The second
row shows the sampling weights per line segment which were used to generate each hypothesis ĥ ∈ M̂. The third row shows
the resulting state s. (Blue = low, white = high.) Between rows two and three, we indicate the individual VP errors. The
checkerboard pattern and ”—” entries indicate instances for which no ground truth is available. The last example is a failure
case, where only two out of four VPs were correctly estimated.



Figure 11: Three qualitative examples for VP estimation with CONSAC on the YUD+ dataset. For each example we show
the original image, extracted line segments, line assignments to ground truth VPs, and to final estimates in the first row. In the
second and third row, we visualise the generation of the multi-hypothesis M̂ eventually selected by CONSAC. The second
row shows the sampling weights per line segment which were used to generate each hypothesis ĥ ∈ M̂. The third row shows
the resulting state s. (Blue = low, white = high.) Between rows two and three, we indicate the individual VP errors. The
checkerboard pattern and ”—” entries indicate instances for which no ground truth is available. The last example is a failure
case, where only two out of four VPs were correctly estimated.



Figure 12: Three qualitative examples for homography estimation with CONSAC-S on the AdelaideRMF [26] dataset. For
each example we show the original images, points with ground truth labels, final estimates, and the misclassification error
(ME) in the first row. In the second and third row, we visualise the generation of the multi-hypothesis M̂ eventually selected
by CONSAC. The second row shows the sampling weights per point correspondence which were used to generate each
hypothesis ĥ ∈ M̂. The third row shows the resulting state s. (Blue = low, white = high.) The checkerboard pattern indicates
instances which were discarded by CONSAC in the final instance selection step.


