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A. Differentiable TRW and TBCA algorithms

Here we consider two other inference methods that have

similar properties of long-range spatial propagation and par-

allelization and can be implemented with same or similar

subroutines. As they improve on the issues of BP in loopy

graphs, this makes them potential candidates for drop-in

replacement of our sweep BP-layer.

Tree Re-weighted BP Wainwright et al. [48] proposed a

correction to BP, which turns it into a variational inference

algorithm optimizing the dual of the LP relaxation. Sup-

pose that we are given an edge-disjoint decomposition of

the graph into trees. For our models it is convenient to take

horizontal and vertical chain subproblems. The TRW-T algo-

rithm [48] can be implemented as proposed in Algorithm 5.

In this representation we keep the decomposition into sub-

problems explicitly and messages are encapsulated in the

computation of max-marginals. This is in order to reuse the

same subroutines we already have for BP-Layer. An explicit

form of updates in terms of messages only which reveals the

similarity to loopy belief propagation with weighting coef-

ficients can be also given [48]. This algorithm is not guar-

anteed to be monotonous because it does block-coordinate

ascent steps in multiple blocks in parallel. However thanks

to parallelization it is fast to compute (in particular on a

GPU), incorporates long-range interactions and avoids the

over-counting problems associated with loopy BP [48].

Tree Block Coordinate Ascent The TBCA method [41]

is an inference algorithm optimizing the dual of the LP relax-

ation. It does so by a block-coordinate ascent in the variables

associated with tree-structured subproblems. The variables

are the same as the messages in BP. At each iteration a sub-

tree (V ′, E ′) from the graph is selected. For simplicity and

Algorithm 5: Tree Reweighted BP (TRW-T)

Input: CRF scores g ∈ R
V×L, f ∈ R

E×L2

;

Output: Beliefs B ∈ R
V×L;

1 gh := gv := 1
2g;

2 for iteration t = 1 . . . T do

/* Compute max-marginals: */

3 par. for horizontal chain subgraphs (V ′, E ′) do

4 bhV′ := max marginals(ghV′ , fE′);

5 par. for vertical chain subgraphs (V ′, E ′) do

6 bvV′ := max marginals(gvV′ , fE′);

/* Enforce consistency: */

7 b := (bh + bv);

8 gh += ( 12b− bh);

9 gv += ( 12b− bv);

10 return Log-beliefs b;

ease of parallelization we will assume (V ′, E ′) is a horizontal

chain and consider it to be ordered from left to right. The

following updates are performed on this chain:

• Compute the current reparametrized costs, excluding the

messages from inside the chain:

ai(s) = gi(s) +
∑

(i,j)∈E\E′

mji(s)∀i ∈ V ′. (19)

• Compute the right messages mR by DP in the direction

R→L.

• Compute the left messages mL by a redistribution DP

(rDP) in the direction R→L.

We can write the rDP update equation [41] in the form

mL
i+1(t) := max

s

(

g̃i(s) + rim
L
i (s) + fi,i+1(s, t)

)

, (20)

where g̃i(s) = gi(s) + (1 − ri)m
R
i (s) and ri ∈ [0, 1] are

the redistribution coefficients. For r = 1, this recovers the

regular dynamic programming. Similarly to DP, the update is

linear and depend on the current maximizers that we record

as oi+1(t). It differs from DP in two ways: i) it depends on

the right messages, which we have taken into account by

incorporating them to the unary costs in g̃i(s) and ii) there

are coefficients ri in the recursion. To handle the latter, we

only need to modify Line 5 of Algorithm 3 to

z := d̄mi+1(t) + ri+1d̄gi+1(t). (21)
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Figure A.1: The cost −gi(k) as a function of d = ‖f0(i)−
f1(i−k)‖1 in our model is similar to robust costs max(d, τ)
previously used to better handle occlusions [24].
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Figure B.1: Robust penalty function. Similar as the P1, P2
model in SGM, but with one additional learnable step. We

allow to learn this function asymmetrically, because positive

occlusions appear only on left-sided object boundaries.

It follows that we have defined the TBCA subproblem update

with standard operations on tensors and the two new opera-

tions DP and rDP, for which we have shown efficient back-

prop methods. The TBCA method [41], when specialized

to horizontal and vertical chains, would then alternate the

above updates in parallel for all horizontal chains and then

for all vertical chains. This method also achieves high par-

allelization efficiency and long-range propagation. Thanks

to the redistribution mechanism it is also guaranteed to be

monotonous. However, this monotonicity may slow down

the information propagation, which can make it less suitable

as a truncated inference technique in deep learning.

B. Implementation Details

We implemented our model in PyTorch5 and the core

of the BP-layer as a highly efficient CUDA kernel. For

geometrical problems such as stereo and optical flow, we

use a truncated compatibility function (see Fig. B.1). This is

allows us to decrease the asymptotic runtime for K labels

to O(K) and makes very efficient inference and training

possible. For semantic segmentation we want to learn the

full compatibility matrix. Nevertheless, since we learn the

cost from any source label to any target label, the runtime

is O(K2) and thus quadratic in the number of labels. The

5https://pytorch.org

practical impact on the runtime can be seen in Tables 1 and 4.

In our optimized CUDA implementation we utilize the

following parallelization: All chains of the same direction as

well as the chains in the opposing directions can be processed

in parallel. Furthermore, the message-passing also paral-

lelizes over the labels. For an image of size N×N , assum-

ing that the number of disparities also grows as K = O(N),
our implementation achieves parallelism of O(N2) while re-

quiring sequential processing O(N), which is an acceptable

scaling with the image size. The backprop operation of the

DP, has the same level of parallelism, which is important for

large-scale learning. These implementations are connected

as extensions to PyTorch, which allows them to be used in

any computation graphs. In order to increase numerical ac-

curacy, we also normalize the messages by subtracting the

maximum over all labels on each step of DP. This does not

affect the output beliefs, as the normalization cancels in the

softmax operation.

We trained the model with the Adam optimizer [19] with

a learning rate of 3·10−3. We always start with a pre-training

for 300k iterations on large scale synthetic data for stereo

and optical flow to get a good initialization for our model.

Finally, we fine-tune the pre-trained models on the target

dataset for 1000 epochs using a learn-rate of 10−5.

B.1. Runtime Analysis

We give a brief comparison of the runtime of the proposed

BP-Layer and 3D convolutions here. Compared to other net-

works such as [4, 16, 53] we completely avoid the usage of

the very costly 3D convolution layers. 3D convolution layers

have a runtime of O(MNKCP 3) while our proposed BP-

Layer has a runtime of O(MNK), where M and N are the

width and the height of the image, K is the number of dispar-

ities, C is the number of feature channels and P is the size

of the 3D kernel. Although Zhang et al. [53] have a similar

runtime of their SGA Layer, they still use 15 3D conv layers

with 48 feature volumes in every layer in their full model

which is very expensive. Note that their LGA Layer also

operates on a 4D input, i.e. on multiple 3D feature volumes,

where in difference we use only one 3D volume in all stereo

experiments. Chang and Chen [4], Kendall et al. [16] use 19

and 25 3D conv layers, respectively. In difference, as our

ablation study in the main paper shows, we are on-par with

these methods on several metrics. Furthermore, our method

is the only method which is also able to achieve high quality

results on the difficult Middlebury 2014 benchmark.

B.2. Model Architecture

Table B.1 shows our very lightweight architecture which

we use for feature extraction. We actually maintain two

copies of this networks with non-shared parameters. The

first one is used as the feature network for matching and the

second one is the feature network for predicting the pairwise

https://pytorch.org


Layer KS Resolution Channels Input

conv00 3 W ×H / W ×H 3 / 16 Image

conv01 3 W ×H / W ×H 16 / 16 conv00

pool0 2 W ×H / W

2
× H

2
16 / 16 conv01

conv10 3 W

2
× H

2
/ W

2
× H

2
16 / 32 pool0

conv11 3 W

2
× H

2
/ W

2
× H

2
32 / 32 conv10

pool1 2 W

2
× H

2
/ W

4
× H

4
32 / 32 conv10

conv20 3 W

4
× H

4
/ W

4
× H

4
32 / 64 pool1

conv21 3 W

4
× H

4
/ W

4
× H

4
64 / 64 conv20

bilin1 - W

4
× H

4
/ W

2
× H

2
64 / 64 conv21

conv12 3 W

2
× H

2
/ W

2
× H

2
96 / 32 {bilin1, conv11}

conv13 3 W

2
× H

2
/ W

2
× H

2
32 / 32 conv12

bilin0 - W

2
× H

2
/ W ×H 32 / 32 conv12

conv02 3 W ×H / W ×H 48 / 32 {bilin0, conv01}

conv03 3 W ×H / W ×H 32 / 32 conv02

Table B.1: Detailed Architecture of our UNet for feature

extraction.

jump-scores. Figs. A.1 and B.1 show the functions used for

unary costs and pairwise costs respectively. Note, that both

functions are robust due to the truncation.

On every hierarchical level we add one convolution layer

to map the features to pixel-wise descriptors used for match-

ing and to pixel-wise jump-scores respectively. We denote

the convolutions as “convD{0,1,2}” and “convS{0,1,2}”,

where D stands for disparity and S for scores. The highest

resolution is here level 0 and the lowest resolution is level

2 in our setting. In the last group in Table B.2 we show the

hierarchical inference block. We apply our BP-Layer on the

score-volume with the coarsest scale, i.e. level 2, upsam-

ple the result trilinearly and combine it with SAD matching

from the next level. We apply this procedure until we get a

regularized score-volume on the finest level, i.e. level 0.

Note that the resolutions given in Tables B.1 and B.2

are relative to the input image size. We use with a factor 2

bilinearly downsampled images as the input to our feature

networks in all experiments but Kitti. In Kitti we do all

computations on the full-size images directly.

C. More Details on Experiments

Due to the limited space in the main paper, we add ad-

ditional qualitative results and interpretations of these re-

sults here. In the following sections, we discuss additional

experiments which were performed for Stereo, Semantic

Segmentation and Optical Flow.

Layer KS Resolution Channels Input

convD2 3 W

4
× W

4
/ H

4
× H

4
64 / 32 conv21

convD1 3 W

2
× W

2
/ H

2
× H

2
32 / 32 conv13

convD0 3 W ×W / H ×H 32 / 32 conv03

convS2 3 W

4
× W

4
/ H

4
× H

4
64 / 32 conv21

convS1 3 W

2
× W

2
/ H

2
× H

2
32 / 32 conv13

convS0 3 W ×W / H ×H 32 / 32 conv03

sad2 - W

4
× W

4
/ H

4
× H

4
32 / D

4
convD2 0, convD2 1

sad1 - W

2
× W

2
/ H

2
× H

2
32 / D

2
convD1 0, convD1 1

sad0 - W ×W / H ×H 32 / D convD0 0, convD0 1

BP2 - W

4
× W

4
/ H

4
× H

4

D

4
/ D

4
sad2, convS2

BP2 up - W

4
× W

4
/ H

2
× H

2

D

4
/ D

2
BP2

BP1 - W

2
× W

2
/ H

2
× H

2

D

2
/ D

2
sad1 + BP2 up, convS1

BP1 up - W

2
× W

2
/ W ×H D

2
/ D BP1

BP0 - W ×W / H ×H D / D sad0 + BP1 up, convS0

Table B.2: Hierarchical BP inference block. We add convolu-

tions to map the features from the feature net to appropriate

input to our BP-Layer. The plus operation ’+’ indicates a

point-wise addition.

C.1. Stereo

Fig. C.1 shows a qualitative ablation study comparing our

model variants on selected images. Note that we show here

exactly the same model variants as in Table 1. The visual

ablation study shows interesting insights about our models:

First, the WTA result (2nd row in Fig. C.1) is already a very

good initialization on all matchable pixels although we use

a very efficient network (Table B.1) which uses only 130k

parameters. The BP-Layer regularizes the WTA solution

by removing most of the artifacts, especially in occluded

regions as can be seen in the 3rd row. However, due to the

NLL loss function the discretization artifacts are visible in

e.g. the 3rd example from left. The multi-scale variant adds

robustness in large, untextured regions as can be seen in

e.g. example 1 on the gray box. Training with the Huber

loss (row 5) enables sub-pixel accurate solutions. Note how

this model captures fine details such as the bar better than

the previous models. Our final model can then be used to

recover very fine details such as the spokes of the motorcycle

in the first example.

Figs. C.2 and C.3 show additional qualitative results on

the Middlebury 2014 test set and the Kitti 2015 test set.

We include the input image and the error images which are

provided by the respective benchmarks.

In Fig. C.4 we compare our prediction with the prediction

of current state-of-the-art models. While GA-Net [53], HD3-

Stereo [51] and PSM-Net [4] predict precise disparity maps
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Figure C.1: Visual ablation study. The methods are the same as used in the quantitative ablation study (Table 1) and compared

from top to bottom. The last row shows the learned jump-costs of BP+MS+Ref (H) used in our BP-Layer, where black=low

cost and white=high cost. The edge images are easily interpretable. We can see that the object edges and depth discontinuities

are precisely captured.



Figure C.2: Qualitative results on the Middlebury 2014 test set. Left: color coded disparity map, right error map, where white

= correct disparity, black = wrong disparity and gray = occluded area.

Figure C.3: Kitti test set examples. The left column shows the color-coded disparity map, the right column shows on top the

input image and on the bottom the official error map on the Kitti benchmark. The blue color in the error map indicates correct

predictions, orange indicate wrong predictions and black is unknown. Note how our method produces high quality results also

for regions where no ground-truth is available, i.e. in the upper third of the images.



Figure C.4: Comparison with other methods on the Kitti benchmark. Top row: LBPS (ours), LBPS error visualization. Middle

row: HD3 Stereo [51], input image. Bottom row: GANet [53], PSMNet [4]. One can observe that LBPS shows no artifacting

in regions where no ground truth is present.

for pixels with available ground-truth, they often hallucinate

incorrect disparities on the other pixels. In contrast, our

method does not seem to be affected at all by this problem

and thus this indicates that our model generalizes very well

also to previously unseen structures. For a better comparison

we highlighted these regions in Fig. C.4.

C.2. Optical Flow

We use the same network architectures for optical flow

as for stereo. Thus, we have two feature nets Table B.1 and

then apply hierarchically our BP-Layer on the cost-volumes.

Here we show here more examples on our validation

set and highlight differences until we get our final model

BP+MS+Ref (H). Therefore, Fig. C.5 shows a visual abla-

tion study. If we compare the models we see that the quality

of the results increase from top to bottom. Thus, the com-

ponents we add are also beneficial for optical flow. If we

add our BP-Layer and use it to regularize the WTA result

we can clearly see that most of the noise, mainly coming

from occlusions, is gone. The Huber loss function and the

refinement successfully predict then contiguous solutions.

Although our approach is very simplistic in comparison with

current state-of-the-art models we are still able to compute

high quality optical flow.

C.3. Semantic Segmentation

We show here additional evaluation metrics provided by

the Cityscapes benchmark. In Table C.1, we show the cat-

egory mIOU score for each invidual category. It can be

observed, that the BP-Layer improves this metric for every

category and thus the average score for all categories is also

improved. The BP-layer also improves the average class

mIOU, as seen in Table C.2. For this metric, the BP-layer

improves the results for most classes. However, the mIOU

is slightly decreased for the classes truck, train and motor-

cycle. This is due to the fact that a confusion between these

classes in the result from ESPNet [32] can be propagated

by the BP-Layer leading to larger patches of incorrect se-

mantic labels. Figure C.7 shows a visual ablation study of

the different models for semantic segmentation. It can be

seen that all of the models utilizing the BP-Layer are able

to regularize over inconsistencies in the original result from

ESPNet [32]. Furthermore, the pixel wise models are able to

better preserve fine structures like traffic lights. If we use the

BP-Layer without jointly training the ESPNet, we get some

line artifacts in the global and pixel results. These artefacts

are easily removed by jointly training both networks as seen

in the pixel joint result.

In Figure C.6, we show qualitative results from the

LBPSS pixel joint model on the test set of Cityscapes [7]. It

can be seen that the detail on the boundaries of the segmen-

tation masks for scene elements such as cars and pedestrians

is preserved, as transition scores are predicted from the input

image. We can also show the full vertical transition score ma-

trix for all classes, which we do in Figure C.8. As described

in the paper, the matrix is not symmetric which allows for

different scores when transitioning upwards and downwards.

If we investigate this matrix in more detail, we are actually

able to interpret the learned results. An interesting obser-

vation can e.g. be seen when looking at the column for the
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Figure C.5: Qualitative ablation study for optical flow. The WTA result clearly shows occluded regions (the noisy regions),

while our model is able to successfully inpaint these regions. Note that the details increase from top to bottom.

Figure C.6: Qualitative results for semantic segmentation on the Cityscapes [7] test set. Our model is able to precisely capture

object boundaries around e.g. pedestrians and cars.
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Figure C.7: Visual ablation study for semantic segmentation on the Cityscapes [7] validation set. The results in the first column

show that the BP-Layer can recover fine details such as the thin structures of the traffic light. In the second column one can

observe that the legs and heads of the pedestrians are recovered and do not appear as a single blob-like structure. This can

also be seen when looking at the bike in the third column. The fourt column shows that the BP-Layer can regularize over

inconsistencies in the initial estimation from ESPNet [32] as seen on the sidewalk.

Method avg flat nature object sky construction human vehicle

ESPNet [32] 82.18 95.49 89.46 52.94 92.47 86.67 69.76 88.45

LBPSS pixel-wise joint 84.31 97.90 90.01 58.89 93.10 88.08 72.79 89.43

Table C.1: Benchmark results for categories on the Cityscapes [7] test set

Method avg road side. build. wall fen. pole tr. light tr. sign veg. terr. sky person rider car truck bus train motorc. bic.

ESPNet [32] 60.34 95.68 73.29 86.60 32.79 36.43 47.06 46.92 55.41 89.83 65.96 92.47 68.48 45.84 89.90 40.00 47.73 40.70 36.40 54.89

LBPSS pw joint 61.00 97.00 76.88 87.38 31.29 37.99 53.60 53.84 60.85 90.41 65.85 93.10 70.34 43.27 90.93 31.59 50.32 33.93 31.77 58.67

Table C.2: Benchmark results with respect to the mIOU metric for each class on the Cityscapes [7] test set.

sky class. It encodes that downward label transitions from

car, truck or train to sky are very expensive and upwards

transitions from e.g. car to sky are comparably cheap. This

is very intuitive and encodes that the sky is always above

the car and not below. Another example is that traffic lights

and vegetation are often surrounded by sky and thus these

scores are higher. Also the scores for the unknown class very

intuitive. The very similar scores to all other classes can

be interpreted as a uniform distribution. This makes totally

sense, because the class “unknown” has interactions with all

other classes.
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Figure C.8: Vertical transition score matrix for all classes, where the upper triangular matrix encodes upwards transitions and

the lower triangular matrix encodes downwards transitions.


