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In these supplementary materials, we give additional de-
tails on the method, as well as results on other tasks (im-
age classification on CIFAR-10, where we compare with the
most similar architecture to ours, MobileNet v2, and gesture
estimation from videos).

1. Dimensional model of affect
Discrete emotional classes are too coarse to summarize

the full range of emotions displayed by humans on a daily
basis. This is the reason why finer, dimensional affect mod-
els, such as the valence and arousal are now favoured by
psychologists [5]. In this circumplex, which can be seen in
Figure 1, the valence level corresponds to how positive or
negative an emotion is, while the arousal level explains how
calming or exciting the emotion is.

A visualization of the prediction of valence and arousal
of our model can be seen in Figure 2, along with some rep-
resentative frames.

2. Automatic rank selection
Using the automatic rank selection procedure detailed in

the method section, we let the model learn end-to-end the
rank of each of the factorized higher-order convolutions.

In Figure 3, we show the number of parameters set to
zero by the network for a regularization parameter of 0.01
and 0.05. The lasso regularization is an easy way to au-
tomatically tune the rank. We found that on average 8 to
15% of the parameters can be set to zero for optimal per-
formance. In practice, about 1 million parameters were re-
moved thanks to this regularization.

In Table 1 we report the number of parameters of spatio-
temporal baselines and compare it to our CP factorized
∗Joint first authors.
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Figure 1: The valence and arousal circumplex. This dimen-
sional model of affect covers the continuous range of emo-
tions displayed by human on a daily basis. The images are
taken from the AffectNet dataset [4]

model. Besides having less parameters, our approach has
the advantage of having a very low number of temporal pa-
rameters which facilitates the training on spatio-temporal
data once it has been pretrained on static data.

Table 1: Number of parameters optimized to train the
temporal model

Network Total
# parameters

# parameters
removed

with LASSO

# parameters
optimized
for video

ResNet18-(2+1)D 31M - 31M

ResNet-18-3D 33M - 33M

Ours [λ = 0.01] 11M 0.7 0.24

Ours [λ = 0.05] 11M 1.3M 0.24
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Figure 2: Evolution of the ground-truth (gt) and predicted (pred) levels of valence and arousal as a function of time, for
one of the test videos of the AFEW-VA dataset.
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Figure 3: Sparsity induced by the automatic rank selection
at each layer of the network (ResNet-18 backbone).

3. Results on LSEMSW
LSEMSW [2] is the Large-scale Subtle Emotions and

Mental States in the Wild database. It contains more than
175, 000 static images annotated in terms of subtle emotions
and cognitive states such as helpless, suspicious, arrogant,
etc. We report results on LSEMSW in table. 2.

Table 2: Results on the LSEMSW database

Method Accuracy

ResNet 34 [2] 28.39 %
Ours 34.55%

4. Initialization of transduction factors
When performing transduction, the added temporal fac-

tors to the CP convolutions are initialized to a constant value
of one. This corresponds to performing static prediction for
each frame. In a first step, only these factors are optimized

while the spatial factors and the weights of the CP convolu-
tions are kept unchanged. Then in a second step every pa-
rameter of the network is optimized. This prevents the new
transducted factors from pulling the existing parameters out
of their local mimimum which would cause the network to
forget the knowledge learnt on the static case (catastrophic
forgetting). The full training with transduction is summa-
rized in Figure 4.

5. Loss function
Our goal is to maximize the correlations coefficients

PCC and CCC, as these metrics are the most commonly
employed in continuous affect estimation. However min-
imizing the RMSE also helps maximizing the correlations
as it gives a lower error in each individual prediction. Our
regression loss function reflects this by incorporating three
losses :

L =
α

α+ β + γ
LRMSE +

β

α+ β + γ
LPCC +

γ

α+ β + γ
LCCC .

LRMSE = RMSEvalence + RMSEarousal (1)

LPCC = 1− PCCvalence + PCCarousal

2
(2)

LCCC = 1− CCCvalence + CCCarousal

2
(3)

The coefficients α, β and γ are shake-shake regulariza-
tion coefficients [1] taken randomly in the range [0; 1] fol-
lowing a uniform distribution. These coefficients allow the
network to minimize each loss without focusing on one of
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Figure 4: Overview of our method. (Left) We start by training a 2D CNN with our proposed factorized convolutional block,
on static images. (Middle) We then apply transduction to that model to extend it from the static to the spatio-temporal
domain. The pretrained spatial factors are kept fixed. (Right) Once the temporal factors have been trained, we fine tune them
along with the spatial factors in order to improve the final performance.

them while leaving others out. Note that on AffectNet dis-
crete classes of emotions are available. We therefore further
jointly perform a regression of the valence and arousal val-
ues as well as a classification of the emotional class. The
classification is done by adding a cross entropy to the loss
function.

6. Results on CIFAR-10
While in the paper we focus on affect estimation, we re-

port here results on a traditional image classification dataset,
CIFAR 10.

CIFAR-10 [3] is a dataset for image classification com-
posed of 10 classes with 6, 000 images which, divided into
5000 images per class for training and 1000 images per
class for testing, on which we report the results.

We used a MobileNet-v2 as our baseline. For our ap-
proach, we simply replaced the full MobileNet-v2 blocks
with ours (which, in the 2D case, differs from MobileNet-
v2 by the use of two separable convolutions along the spa-
tial dimensions instead of a single 2D kernel). We kept all
the parameters the same for all experiments to allow for
fair comparison and reported performance averaged across
3 runs. The standard deviation was 0.033 for MobileNet-v2
and 0.036 for our approach. We optimized the loss using
stochastic gradient descent with a mini-batch size of 128,
starting with a learning rate of 0.1, decreased by a factor of
10 after 150 and 250 epochs, for a total of 400 epochs, with
a momentum of 0.9. For MobileNet-v2, we used a weight
decay of 4e−5 and 1e−4 for our approach. Optimization
was done on a single NVIDIA 1080Ti GPU.

We compared our method with a MobileNet-v2 with a
comparable number of parameters, Table 3. Unsurpris-
ingly, both approach yield similar results since, in the 2D
case, the two networks architectures are similar. It is
worth noting that our method has marginally less param-

Table 3: Results on the CIFAR-10 dataset

Network # parameters Accuracy (%)

MobileNet-v2 2.30M 94
Ours 2.29M 94

eters than MobileNet-v2, for the same number of chan-
nels, even though that network is already optimized for ef-
ficiency.

7. Results on gesture estimation
In this section, we report additional results on the Jester

dataset. We compare a network that employs regular convo-
lutional blocks to the same network that uses our proposed
higher-order factorized convolutional blocks.

20BN-Jester v1 is a dataset1 composed of 148, 092
videos, each representing one of 27 hand gestures (e.g.
swiping left, thumb up, etc). Each video contains a person
performing one of gestures in front of a web camera. Out of
the 148, 092 videos 118, 562 are used for training, 14, 787
for validation on which we report the results.

For the 20BN-Jester dataset, we used a convolutional
column composed of 4 convolutional blocks with kernel
size 3×3×3, with respective input and output of channels:
(3, 64), (64, 128), (128, 256) and (256, 256), followed by
two fully-connected layers to reduce the dimensionality to
512 first, and finally to the number of classes. Between each
convolution we added a batch-normalisation layer, non-
linearity (ELU) and 2 × 2 × 2 max-pooling. The full ar-
chitecture is graphically represented in Figure 5 of the ar-
chitecture detailed in the paper, for clarity.

1Dataset available at https://www.twentybn.com/
datasets/jester/v1.

https://www.twentybn.com/datasets/jester/v1
https://www.twentybn.com/datasets/jester/v1


3
D

 C
o

n
v
 B

.
3

 x
 6

4
 x

 1
 x

 2
 x

 2

P
o

o
l

B
a

tc
h

 N
o

rm

E
L

U

3
D

 C
o

n
v
 B

.
3

 x
 6

4
 x

 1
 x

 2
 x

 2

P
o

o
l

B
a

tc
h

 N
o

rm

E
L

U

3
D

 C
o

n
v
 B

.
3

 x
 6

4
 x

 1
 x

 2
 x

 2

P
o

o
l

B
a

tc
h

 N
o

rm

E
L

U

3
D

 C
o

n
v
 B

.
3

 x
 6

4
 x

 1
 x

 2
 x

 2

P
o

o
l

B
a

tc
h

 N
o

rm

E
L

U

3
D

 C
o

n
v
 B

.
3

 x
 6

4
 x

 1
 x

 2
 x

 2

P
o

o
l

B
a

tc
h

 N
o

rm

E
L

U

3
D

 C
o

n
v
 B

.
3

 x
 6

4
 x

 1
 x

 2
 x

 2

P
o

o
l

B
a

tc
h

 N
o

rm

E
L

U

3
D

 C
o

n
v
 B

.
3

 x
 6

4
 x

 1
 x

 2
 x

 2

P
o

o
l

B
a

tc
h

 N
o

rm

E
L

U

3
D

 C
o

n
v
 B

.
3

 x
 6

4
 x

 1
 x

 2
 x

 2

P
o

o
l

B
a

tc
h

 N
o

rm

E
L

U

E
L

U

L
in

e
a

r
1

2
8

0
0

 x
 5

1
2

L
in

e
a

r
5

1
2

 x
 2

7

Figure 5: Architecture of our 3D convolutional network. We employed the same architecture for both our baseline and our
approach, where the only difference is the 3D convolutional block used (3D Conv B): for the baseline a regular 3D conv, and
for our method, our proposed HO-CP conv-S. Each convolution is followed by a batch-normalisation, non-linearity (ELU)
and a max pooling (over 2× 2× 2 non-overlapping regions).

For our approach, we used the same setting but replaced
the 3D convolutions with our proposed block and used, for
each layer, 6× ninput-channels for the rank of the HO-CP con-
volution. The dataset was processed by batches of 32 se-
quences of RGB images, with a temporal resolution of 18
frames and a size of 84 × 84. The loss is optimized by
mini-batches of 32 samples using stochastic gradient de-
scent, with a starting learning-rate of 0.001, decreased by
a factor of 10 on plateau, a weight decay of 1e−5 and mo-
mentum of 0.9. All optimization was done on 2 NVIDIA
1080Ti GPUs.

Table 4: Results on the 20BN-Jester Dataset

#conv Accuracy (%)
Network parameters Top-1 Top-5

3D-ConvNet 2.9M 83.2 97.0
HO-CP ConvNet (Ours) 1.2M 83.8 97.4
HO-CP ConvNet-S (Ours) 1.2M 85.4 98.6

Results for 3D convolutional networks For the 3D
case, we test our Higher-Order CP convolution with a regu-
lar 3D convolution in a simple neural network architecture,
in the same setting, in order to be able to compare them. Our
approach is more computationally efficient and gets better
performance as shown in Table 4. In particular, the basic
version without skip connection and with RELU (emphHO-
CP ConvNet) has 1.7 million less parameters in the con-
volutional layers compared to the regular 3D network, and
yet, converges to better Top-1 and Top-5 accuracy. The ver-
sion with skip-connection and PReLU (HO-CP ConvNet-S)
beats all approaches.

8. Algorithm for our CP convolutions

We summarize our efficient higher-order factorized con-
volution in algorithm 1.

Algorithm 1 Higher-order CP convolutions

Require: Input activation tensor X ∈ RC×D0×···×DN

CP kernel weight tensor W =
JU(T ),U(C),U(K0), · · · ,U(KN )K
Skip connection weight matrix U(S) ∈ RO×C

Ensure: Efficient N-D convolution on X
Efficient 1D convolution on the channels: H ⇐ X ×0

U(C)

for i:=1 to N − 2 do
H ⇐ H ?i U

(Ki) (1–D conv along the ithmode)
H ⇐ PReLU (H) or ReLU (H) [optional]
H ⇐ Batch-Norm (H) [optional]

end for
Efficient 1D convolution from the rank to the output
number of channels: H ⇐ H×1 U

(T )

if Skip-connection then
return H+ X ×0 U

(S)

else
return H

end if
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