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1. Face3DVid Collection And Annotation
Please visit the project’s page for more information:

https://github.com/mrkoujan/DeepFaceFlow

1.1. 3D Face Reconstruction From Videos
Following [4], we exploit the fact that the current state of the

art in facial landmarking can achieve highly-reliable landmark lo-
calization and therefore fuse the landmarks information with high-
quality 3D face models to achieve robust and accurate 3D face re-
construction results. We assume that the camera performs scaled
orthographic projection (SOP) and that the identity parameters i
are fixed (but unknown) over all the frames, letting however the
expression parameters ef as well as the camera parameters (scale
and 3D pose) to vary from frame to frame. In brief, we minimize
a cost function that consists of three terms: a) a sum of squared
2D landmark reprojection errors over all frames, b) a shape priors
term that imposes a quadratic prior over the identity and per-frame
expression parameters, and c) a temporal smoothness term that
enforces temporal smoothness of the expression parameters by us-
ing a quadratic penalty of the second temporal derivatives of the
expression vector. In addition, to deal with outliers (e.g. frames
with strong occlusions that cause gross errors in the landmarks),
we also impose box constraints on the identity and per-frame ex-
pression parameters. Assuming that the camera parameters have
been estimated in an initialization stage, the minimization of the
cost function results in a large-scale least squares problem with
box constraints, which we solve efficiently by using the reflective
Newton method of [3].

1.1.1 3D Modelling of Facial Identity and Expression

To create effective pseudo-ground truth, we need to perform 3D
face reconstruction on an especially large-scale video dataset that
is both efficient and accurate. For this reason, we choose to fit the
adopted 3DMM model on the sequence of facial landmarks over
each video of the dataset. Since this process is intended for the cre-
ation of pseudo-ground truth on a large collection of videos, we are
not constrained by the need of online performance. Therefore, we
adopt the approach of [4] (with the exception of the initialization
stage, see section 1.1.2), which is a batch approach that takes into
account the information from all video frames simultaneously and

exploits the rich dynamic information usually contained in facial
videos. This is an energy minimization approach to fit the com-
bined identity and expression 3DMM model on facial landmarks
from all frames of the input video simultaneously.

1.1.2 Initialization Stage of Camera Parameters

In the initialization stage of the 3D video reconstruction proposed
in [4], the camera parameters are estimated using rigid Structure
from Motion (SfM). This works reliably for facial videos with sub-
stantial head rotation, since it creates the required variation in the
relative 3D pose that is typically needed in SfM. However, in cases
of videos where there is almost no or very little head rotation (e.g.
a video of a person looking straight at the camera and talking),
SfM yields a very unstable estimation of the camera parameters,
due to the ambiguities caused when viewing the scene from al-
most the same view point. To overcome this limitation and exploit
much wider types of facial videos, we adopt a substantially differ-
ent approach in this stage, which utilizes earlier the adopted 3D
face model and effectively constraints the problem, yielding not
only robust but also accurate estimations.

In more detail, similar to [4], our initialization stage assumes
that the shape to be recovered remains rigid over the whole video.
This assumption is over-simplistic but is adequate for an accurate
estimation of camera parameters, since the deformations in human
faces can be reliably modelled as localized deviations from a rigid
shape. However, in contrast to [4], we do not seek to estimate the
full degrees of freedom of the 3D facial shape (i.e. every coordi-
nate of every point of the 3D shape being a separate independent
parameter); instead we significantly reduce the allowed degrees of
freedom by imposing the constraint that it is synthesised using the
3D face model, equation 1 of our main paper.

More formally, we seek to estimate the identity i and expres-
sion e parameters of the rigid facial shape as well as the per-frame
camera parameters expressed as the SOP camera projection matrix
Πf ∈ R2×3 for every frame f (Πf corresponds to the first 2 rows
of the rotation matrix multiplied with the scale parameter). This
estimation is implemented by solely considering and minimising
the reprojection error term of the overall cost function described
in Sec. 1.1, which is the only term that depends on the camera
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parameters. This minimisation can be written as:

minimise Eland(Π1, ..,Πnf ; i, e) =

F∑
f=1

L∑
j=1

∥∥∥Πf

(
x̄(lj) + U

(lj)

id i + U
(lj)
exp e

)
− `j,f
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where `j,f ∈ R2 is the 2D location of the j-th facial landmark
(j = 1, .., L) in the f -th frame of the input video (f = 1, .., F ).
In addition, x̄(lj) ∈ R3, U(lj)

id ∈ R3×ni and U
(lj)
exp ∈ R3×ne are

the 3 rows of x̄, Uid and Uexp respectively that correspond to the
x, y and z coordinates of the vertex of the dense facial shape with
index lj , which is associated with the j-th landmark. In addition,
as in the main 3D face reconstruction, we impose box constraints
on the shape parameters i and e.

We solve the above problem by adopting an alternating min-
imisation approach, with respect to shape parameters {i, e} and
camera parameters {Π1, ..,Πnf }. We initialise the alternation by
setting i and e to zero vectors, which corresponds to the mean
shape x̄. Then we alternate between the following two steps:

1. Keeping the shape parameters {i, e} fixed, we update the
camera parameters {Π1, ..,Πnf } by minimising Eland (1)
with respect to {Π1, ..,Πnf }. This minimisation is decou-
pled for every frame and is approximated by using the ex-
tended POS approach of Bas et al. [1]

2. Keeping the camera parameters {Π1, ..,Πnf } fixed, we up-
date the shape parameters {i, e} by minimising Eland (1)
with respect to {i, e} under the imposed box constraints.
This is again a least squares optimisation with box con-
straints, which we solve efficiently by using the reflective
Newton method of [3].

We have empirically observed that it is sufficient to apply only a
few number of the above alternation iterations (e.g. 5), since after
that we achieve convergence with negligible updates on the esti-
mated parameters. As the final processing for this initialisation
step, the sequence of estimated camera parameters (in the form
of scale, rotation angles and translation parameters) is temporally
smoothed using cubic smoothing splines. Please note that the es-
timation of the rigid shape parameters {i, e} in this initialisation
stage plays only an auxiliary role, to facilitate the estimation of the
camera parameters, which is the main goal and the final output of
this stage.

1.2. Application on a Large-scale Videos Dataset
In every frame of every video of our video collection, we ap-

plied the method of [5] to detect faces and extract from each de-
tected face a set of 68 landmarks, according to the MULTI-PIE
markup scheme [7]. Afterwards, we applied the following steps:
False detections removal: This was implemented by tracking
each detected face in the first frame throughout the processed
video. A face is kept if its bounding box (BB) stays within a rea-
sonable margin, chosen experimentally to be half the width of the
BB, compared to its location in the previous frame. We pruned
videos in which we lost track of the face forK consecutive frames
(chosen experimentally to be 5) before reaching the desired num-
ber of tracked frames F (chosen experimentally to be 2000). This
step helped to remove false detections arising due to a failure in the

Figure 1. 2D color map used to encode the 2D flow. The white cen-
tral pixel indicates no motion, while every other pixel’s color en-
codes the vectorial displacement with respect to the central pixel.

face detector or out-of-context detections, e.g. a facial photo in the
background of a video, faces that pop in/out of the camera viewing
angle, etc. This step resulted in pruning 1000 videos (8.34% of the
initial dataset).
Temporal smoothing: Extracted landmarks were temporally
smoothed using cubic splines. This was performed to alleviate
the effects of the potential jitters in the extracted landmarks be-
tween consecutive frames and to fill in the possible gaps (frames
with lost tracking) that persisted for less than K frames.
3D facial reconstruction from videos: For every video, we fol-
lowed the process described in Sec. 1.1 and estimated the 3D face
reconstruction.
Error pruning: With such a large number of videos, there will be
some cases of videos where 3D reconstruction has failed. This is
an unavoidable byproduct of the fact that the adopted landmark
localization, even though very robust, might not be sufficiently
accurate for cases of extremely challenging facial videos. Our
approach compensates for that by two pruning stages: a) Auto-
matic pruning: We are based on the fact that under the adopted
3D face modelling (equation 1 of our main paper), the coordinates
of the estimated identity vector i of each video are assumed in-
dependent, identically distributed random variables that follow a
normal distribution. Therefore, we classify as outliers and auto-
matically prune the videos that correspond to an estimated value
of ‖i‖ above an appropriate threshold. This resulted in automat-
ically pruning 750 more videos (6.25% of the initial dataset). b)
Manual pruning: There might be a few problematic videos that
“survived” the automatic pruning. For that reason, we inspected
the reconstructions of all remaining videos and manually flag and
prune videos where it is evident that the 3D face reconstruction
has failed. In this step we manually pruned 500 videos (around
4.18% of the initial dataset).

To conclude, our constructed training set consists of videos
of our collection that survived the aforementioned steps of video
pruning. It consists of 9750 videos (81.25% of the initial dataset)
with 1600 different identities and around 12.5M frames.



Figure 2. Sphere representing the color model we use for encoding
the estimated 3D flow. Three different view angles of the same
sphere are shown. This sphere corresponds to a single specific
value of the normalised motion magnitude (r), see equation 2.

2. Flow Color Coding
2D flow color-coding. Figure 1 illustrates the color map we

sample from while encoding our color-coded 2D flow results.
Following Butler et al. [2], we compute the magnitude and
direction of the 2D flow vector and use 1) the magnitude as the
intensity, and 2) the direction as the hue. Our flow map is different
from [2] in only the flow in the y-axis (flipped vertically), where
ours follows the standard image axes (y values are zero in top-left
corner of the image and increase when moving downwards). The
color of each motion is selected after mapping the motion vector
to figure 1, with the tail of this vector starting in the middle white
pixel and the head samples the color. We normalise the intensity
of the color (magnitude of motion) for all pairs of images shown
in our experimental section with one global value to make motions
comparable among different pairs.

3D flow color-coding. In order to encode each 3D flow vector
with a distinctive color, we first convert the x-y-z coordinates pro-
duced by our framework at the output to spherical coordinates, see
equation (2) below.

r =
√
x2 + y2 + z2

θ = arctan(
y

x
)

φ = arctan
z√

x2 + y2

(2)

We thereafter map the HSV color model to a normalised sphere
surface by regarding r as the value, φ as the saturation and θ as the
hue, after we normalise the three of them to the range [0, 1]. Fig-
ure 2 demonstrates the color sphere rendered from three different
view angles. This sphere shows the color map we sample from
for a fixed motion magnitude and changing direction. For a given
3D flow vector, the corresponding color is selected with the tail of
this vector at the centre of the sphere representing the same motion
magnitude and the head samples the color. Please check the sup-
plementary video submitted for more visual clarifications. Figure
3 shows the color sampling sphere rendered this time with three
different motion magnitudes (r) and same view angle. As it is ev-
ident in figure 3, small motions correspond to darker colors, with
black color meaning no motion.

3. Video-to-Video Synthesis with 3D Flow
The aim of this experiment was to further investigate the use-

fulness of our proposed framework in: 1) capturing the human

Figure 3. Three different 3D-flow-color-coding spheres with 3
distinct normalised motion magnitude values, i.e. left-to-right
r = 1, r = 0.75, and r = 0.12.

facial 3D motion, and 2) successfully employing this captured mo-
tion in learning the dynamics of faces from videos for a full head
reenactment application. Towards that aim, we use the recently
proposed method of [10], which is in essence a general video-to-
video synthesis approach mapping a source (conditioning) video
to a photo-realistic output one. The authors of [10] train their
framework in an adversarial manner and use two discriminators,
termed as image (DI ) and video (Dv) discriminators, during train-
ing. The aim of the video discriminator is to learn the temporal dy-
namics of a target video during the training time. This is accom-
plished in their paper with the help of FlowNet2 [9] which was
utilised to extract the 2D flow from each pair of monocular con-
secutive real (ground-truth) frames in a sequence and passing them
to the video discriminator. On its behalf,Dv learns to differentiate
the concatenation of a real sequence and their extracted 2D flow
from the corresponding fake sequence with also the real 2D flow.
In this work, we replace the FlowNet2 employed in [10] by our
proposed approach and aid the generator and video discriminator
to learn the temporal facial dynamics represented by our 3D facial
flow. As a conditioning input, we use the PNCC image of each
frame in the training sequence, instead of the facial landmarks sug-
gested in the original paper [10], so that the network learns how to
map an input PNCC image to the RGB frame of a specific target
person. During test, we feed the trained generator with only the
PNCC sequence of the test subject. However, in this phase, the
PNCC was generated with a differently-constructed 3D shape S
and camera parameters compared to training. More specifically,
S in equation 3 of our main paper was constructed with the help
of a 3DMM, as explained in equation 1 of our main paper, with
the identity parameters i coming from the target (training) person,
while the the expression e and camera parameters c reflect the
head pose and expression of each frame in the source (test) se-
quence. Please check the submitted video for more visual results
of the synthesised videos with the aid of our 3D flow approach.

4. Adaptation of 2D Flow Methods to Generate
3D Flow

FlowNetS&FlowNetC&FlowNet2. To produce 3D flow, we
mainly modify the refinement stage of these networks, please see
[6] and [9] for more details of these networks. We change the
size of each deconvolutional, flow prediction, and upsampling fil-
ters so the the output is a 3-channel image of the flow map. For
FlowNet2, we stack the modified flowNetS and FlowNetC and
modify FlowNet-SD in the same manner.
LiteNet. We modify basically the NetE part of [8]. More specifi-



Figure 4. 3D flow color-coded results generated by our method and other state-of-the-art approaches on some in-the-wild pairs of images.

cally, we change the size of the convolutional filters of each of the
cascaded flow inference and regularization stages so that they ex-
pect and produce 3-channel flow maps instead of 2-channel’s. The
warping stage was still carried out based on the first two channels
(x and y coordinates) of the produced 3D flow map.
Figure 4 shows some more 3D flow results estimated by our
method and other state-of-the-art approaches.

5. 3D flow Visualisation as Dense Facial Recon-
struction

As an alternative for the color-coded 3D flow maps, we use
our estimated 3D flow as dense landmarks and perform 3D fa-
cial reconstruction for each pair of consecutive images in the input
video. To do so, we take an input pair of RGB images coming
from the beginning of a video and estimate their 3D flow map. We,
then, warp the 3D point cloud stored in the estimated PNCC im-
age, which is estimated at an intermediate step of our framework,
based on this 3D flow. This results in a 3D facial reconstruction of
the second frame in the input pair, but with only 3D vertices that
are visible from the camera view angle of frame 1. We use this
partially-occluded 3D facial estimation as landmarks and perform
dense-landmarks-based reconstruction with the aid of the 3DMM
we use while building our Face3DVid dataset. This basically boils
down to solving a least-squares minimisation problem to estimate
the identity and facial expression parameters of equation 1 of our
main paper. Please see the supplementary video for some exem-
plar visualisations following this approach. The produced video
results show the ability of our 3D flow in capturing the facial ex-
pression (mouth movements, blinking, etc) well in the exemplar
videos.
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