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We provide additional analysis of our task and models
including confusion matrices, prediction examples for all
our models, skewed distribution of number of samples for
our classes, and diagrams depicting how we grouped the
interaction and relationship classes.

A. Impact of Modalities
We analyze the impact of modalities by presenting quali-

tative examples where using multiple modalities help predict
the correct interactions. Qualitative results presented here,
refer to the quantitative performance indicated in Table 1 of
the main paper. Fig. 1 shows that using dialog can help to
improve predictions, Fig. 2 demonstrates the necessity of
visual clip information and highlights that the two modalities
are complementary. Finally, Fig. 3 shows that focusing on
tracks (visual representations in which the two characters
appear) provides further improvements to our model. Fur-
thermore, Fig. 4 shows top-5 interaction classes that benefit
most from using additional modalities.
Analyzing modalities. We also analyze the two models
trained on only visual or only dialog cues (first two rows
of Table 1). Some interactions can be recognized only with
visual (v) features: rides 63% (v) / 0% (d), walks 29% (v) /
0% (d), runs 26% (v) / 0% (d); while others only with dialog
(d) cues: apologizes 0% (v) / 66% (d), compliments 0% (v) /
26% (d), agrees 0% (v) / 25% (d).

Interactions that achieve non-zero accuracy with both
modalities are: hits 64% (v) / 5% (d), greets 12% (v) / 57%
(d), explains 25% (v) / 51% (d).

Additionally, the top-5 predicted classes for visual cues
are asks 77%, hits 64%, rides 63%, watches 49%, talks on
phone 41%; and dialog cues are asks 75%, apologizes 66%,
greets 57%, explains 51%, watches 30%. As asks is the most
common class, and watches is the second most common,
these interactions work well with both modalities.

B. Joint Interaction and Relationships
Confusion matrices. Fig. 5 shows the confusion matrix in
the top-15 most commonly occurring interactions on the

validation and test sets. We see that multiple dialog based
interactions (e.g. talks to, informs, and explains) are often
confused. We also present confusion matrices for relation-
ships in Fig. 6. A large part of the confusion is due to lack
of sufficient data to model the tail of relationship classes.
Qualitative examples. Related to Table 2 of the main paper,
Fig. 7 shows some examples where interaction predictions
improve by jointly learning to model both interactions and
relationships. Similarly, Fig. 8 shows how relationship clas-
sification benefits from our multi-task training setup.

C. Examples for Who is Interacting
Empirical evaluation shows that the knowledge about the

relationship is important for localizing the pair of characters
(Table 6 of the main paper). In Fig. 9, we illustrate an
example where the dad walks into a room, sees his daughter
with someone, and asks questions (see figure caption for
details).

Finally, in Fig. 10, we show an example where the model
is able to correctly predict all components (interaction class,
relationship type and the pair of tracks) in a complex situa-
tion with more than 2 people appearing in the clip.

D. Dataset Analysis
Fig. 11 and Fig. 12 show normalized distributions for the

number of samples in each class for train, validation and
test sets of interactions and relationships respectively. As
can be seen the most common classes appear many more
times than the others. Data from a complete movie belongs
to one of the three train/val/test sets to avoid model bias on
the plot and characters behaviour. Notably, this means that
the relative ratios between number of samples per class are
also not necessarily consistent making the dataset and task
even more challenging.

In the main paper, we described our approach to group
over 300 interactions into 101 classes, and over 100 rela-
tionships into 15. We use radial tree diagrams to depict the
groupings for interaction and relationship labels, visualized
in Fig. 13 and 14 respectively.
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Visual

- Focker, I'm not gonna tell you again! Jinx cannot flush the toilet. 
He's a cat, for chrissakes! The animal doesn't even have thumbs, 
Focker.

watches  0.71
asks  0.70

informs 0.66
orders  0.64

explains  0.64

explains  0.78
talks to  0.72
reminds  0.68
informs 0.67
shows  0.64

Textual

Visual

Input Modalities

Figure 1: Improvement in prediction of interactions by including textual modality in addition to visual. The model learns to recognize
subtle differences between interactions based on dialog. The example is from Meet the Parents (2000).

- What a bruiser. 

- The Cardinals just refuse to go quietly into the desert night. I'm 

just trying to be a little poetic.

- A tough hit on Tidwell. I'd have made a touchdown. That's his 

sixth catch tonight. A first down at the 19 yard line.

- Another savage hit on Tidwell. They're really working Tidwell.

explains  0.73
hears  0.65

watches  0.65
informs  0.65
argues  0.64

watches  0.75
explains  0.67

hears  0.67
talks to  0.62
plays  0.58

Textual

Textual

Visual

Input Modalities

Figure 2: Improvement in prediction of interactions by including visual modality in addition to textual. The top-5 predicted interactions
reflect the impact of visual input rather than relying only on the dialog. The example is from Jerry Maguire (1996).

Visual- Hey, Jackie.

- Wanna play, Pops? 

Let's play.

informs  0.70
suggests  0.69

greets 0.69
watches  0.67

asks  0.67

watches  0.69
greets  0.67

suggests  0.67
informs 0.66
asks  0.64

Textual

Tracks

Visual Textual

Input Modalities

Figure 3: Improvement in prediction of interactions by including the pair of tracks modality in addition to visual and textual cues. The
model can concentrate its attention on visual cues for the two people of interest instead of looking only at the clip level. The example is from
Meet the Parents (2000).
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Figure 4: Each plot shows 5 interaction classes that have the most number of improved instances by including an additional modality.
Specifically, the x-axis denotes the number of samples in which interaction prediction performance improves. Left: From only visual clip
representation to visual and textual. As expected, using dialogues in addition to video frames boosts performance for classes that rely on
dialog e.g. explains, informs. Middle: From only textual clip representation to visual and textual. Visual clip representations influence
classes as kisses, runs during which people usually do not talk (dialog modality filled with zeros). Right: Finally, including all three
modalities visual, textual, tracks improves performance over using visual and textual. Track pair localization improves recognition of classes
typically used in group activities.

Figure 5: Confusion matrices for top-15 most common interactions for validation set (left) and test set (right). Model corresponds to the “Int.
only” performance of 26.1% shown in Table 2. Numbers on the right axis indicate number of samples for each class.
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Figure 6: Confusion matrices for all relationships for validation set (left) and test set (right). Model corresponds to the “Rel. only”
performance of 26.8% shown in Table 2. Numbers on the right axis indicate number of samples for each class.
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Interactions

only

Model

watches  0.64
suggests  0.61
explains 0.61

asks  0.58
informs  0.54

Joint
Ints Rels


asks  0.64
watches  0.62
assures  0.59
explains 0.57

suggests  0.51

- If anybody else wants to come with me, this is a chance for something real, 
and fun, and inspiring in this godforsaken business,and we will do it 
together. Who's coming with me? Who's coming with me? Who's coming 
with me besides Flipper here? This is embarrassing.

Ints 
Prediction

colleagues
represented as collection of N clips with the same two people

Interactions

only

Model

watches  0.70
leaves  0.66
greets 0.65
walks  0.59
stays  0.59

Joint
Ints Rels


leaves  0.62
greets  0.61

watches  0.58
stays 0.50
walks  0.50

no dialog

Ints 
Prediction

friends

represented as collection of N clips with the same two people

Figure 7: We show examples where training to predict interactions and relationships jointly helps improve the performance of interactions.
Top: In the example from Jerry Maguire (1996), the joint model looks at several clips between Dorothy and Jerry and is able to reason
about them being colleagues. This in turn helps refine the interaction prediction to asks. Bottom: In the example from Four Weddings and
Funeral (1994), the model observes several clips from the entire movie where Charles and Tom are friends, and reasons that the interaction
should be leave (which contains the leave together class). Note that there is no dialog for this clip.
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Relationships

only

Model

stranger 0.58
lover  0.49
parent 0.48

Rels 
Prediction

complains kisses informs
Rels
 Ints

Joint
lover 0.63

stranger  0.62
parent 0.55

Relationships


Rels
 Ints

only

Joint

Model

stranger 0.59
worker  0.59

boss 0.58

Rels 
Prediction

customer 0.66
manager  0.62
stranger 0.60

explains explains

Figure 8: We show examples where training to predict interactions and relationships jointly helps improve the performance of relationships.
Top: In the movie Four Weddings and Funeral (1994), clips between Bernard and Lydia exhibit a variety of interactions (e.g. kisses) that are
more typical between lovers than strangers. Bottom: In the movie The Firm (1993), Frank and Mitch meet only once for a consultation, and
are involved in two clips with the same interaction label explains. Our model is able to reason about this interaction, and it encourages the
relationship to be customer and manager, instead of stranger.
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Clip

Possible track pairs

- Not in my own den. What are you two doing 
in here? 

(Pam, None) (None, Pam)

(Greg, Pam) (Pam, Greg)

(Greg, Jack)

(Pam, Jack)

(Jack, Greg)

(Jack, Pam)

(Jack, None) (None, Jack)

(Greg, None) (None, Greg)

PredictGiven

Who?
asks

parent

(Jack, Pam)

Figure 9: We illustrate an example from the movie Meet the Parents (2000) where a father (Jack) walks into a room while his daughter (Pam)
and the guy (Greg) are kissing. Our goal is to predict the two characters when the interaction and relationship labels are provided. In this
particular example, we see that Dad asks Pam a question (What are you two doing in here?). Note that their relationship is encoded as (Pam
→ child → Jack), or equivalently, (Jack → parent → Pam). When searching for the pair of characters with a given interaction asks and
relationship as parent, our model is able to focus on the question at the clip level as it is asked by Jack in the interaction, and correctly
predict (Jack, Pam) as the ordered character pair. Note that our model not only considers all possible directed track pairs (e.g. (Greg, Pam)
and (Pam, Greg)) between characters, but also singleton tracks (e.g. (Jack, None)) to deal with situations when a person is absent due to
failure in tracking or does not appear in the scene.
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- Oh, hi. Hi, Jess.

- Uh, this is my work friend, David.

- David is an accountant.

- David, this is Jessica, my babysitter.

- Uh So, you know, everything looks 

great.

- See you at work.

- Yeah, see you at work.

Possible track pairs

Clip

(Jess, David) (David, Jess)

(Jess, Emily)

(Emily, David)

(Emily, Jess)

(David, Emily)

(Jess, None) (None, Jess)

(David, None) (None, David)

(Emily, None) (None, Emily)

Emily  Jess

Joint prediction

introduces

boss

Figure 10: We present an example where our model is able to correctly and jointly predict all three components: track pair, interaction class
and relationship type for the clip obtained from the movie Crazy, Stupid, Love (2011). This clip contains three characters which leads to 12
possible track pairs (including singletons to deal with situations when a person is absent due to failure in tracking or does not appear in the
scene). The model is able to correctly predict the two characters, their order, interaction and relationship. In this case, Emily introduces
David to Jess. Jess is also her hired babysitter, and thus their relationship is – Emily is boss of Jess.
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Figure 11: Distribution of interaction labels in train/val/test sets. Sorted by descending order based on train set.
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Figure 13: Diagram depicting how we group 324 interaction classes (outer circle) into 101 (inner circle). Best seen on the screen.

9



RELATIONSHIPS

strangerstranger

friend

friend

colleague

colleague

lover

lover

p
a
re

n
t

p
a
re

n
t

bo
ss

bo
ss

sib
lin

g

sib
lin

g

kbr

knows b
y reputation

spousecollaborator

enemy

enemy

customer

customer

child

child

acquaintance

acquaintance

best friend

antagonist

em
pl

oy
er

 o
f

w
o
rk

e
r

e
m

p
lo

y
e
d
 b

y

would like to know

engaged

a
u
n
t/u

n
cle

m
an

ag
er

te
a
ch

e
r

neighbor

operative system

business partner
co

usin

ow
n
er

m
o
th

e
r-in

-la
w

m
en

to
r

patient
fiancee

room
m

ate

u
n
cl

e

foster-son

ex-lover

ex-loverdivorced

sis
te

r/b
ro

th
er-i

n-la
w

a
u
n
t

robber

ex-spouse

ex-neighbor

g
ra

n
d
p
a
re

n
t

su
p
er

io
r

girlfriend

p
a
re

n
t-

in
-l
a
w

fa
th

e
r-

in
-l
a
w

m
istress

supporters

grandchild

g
o
d
fa

th
e
r

la
nd

lo
rd

pu
bl

ic
 o
ffi

ci
al

a
p
p
re

n
tice

niece/nephew

la
w

ye
r supporter

coup
le

sla
v
e

ve
t

in
te

rv
ie

w
e
e

in
te

rv
ie

w
er

g
u
a
rd

ia
n

a
g
e
n
t

classm
ate

family friend

godson

broth
er in

-la
w

cusomer

replacement

w
o
rk

e
r

em
pl

oy
er

customers

fi
an

ce

a
id

e

heard about

sp
on

so
r

a
lle

g
e
d
 lo

ve
r

fan

ho
st

students

fa
m

ily

classm
a
te

s

ex-fiance

student

b
o
yfrie

n
d

ps
yc

hi
at

ris
t

goddaughter

ex-girlfriend

su
pe

rv
iso

r
tra

iner

hostage

babysit
te

r
docto

rnanny

o
n
e
 n

ig
h
t sta

n
d

dist
ant c

ousin

instr
uctor

ex-boyfriend

nurse
tenant

competitor

killer

st
ep

-m
ot

h
er

close friend

Figure 14: Diagram depicting how we group 107 relationship classes (outer circle) into 15 (inner circle).
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