Supplementary Material: Articulation-aware Canonical Surface Mapping

Nilesh Kulkarni® Abhinav Gupta®?
!University of Michigan
{nileshk, fouhey}Qumich.edu

2Carnegie Mellon University

Shubham Tulsiani®
3Facebook AI Research

David F. Fouhey®

abhinavg@cs.cmu.edu shubhtuls@fb.com

https://nileshkulkarni.github.io/acsm/

A. Constructing ¢ and o

Parameterizing surface of a mesh. The surface S of a
mesh is 2D manifold in 3D space hence we can construct a
mapping ¢ : [0,1)? — S. We deal with triangular meshes
as they are the most general form of mesh representation.
Given the mapping from 2D square to a spherical mesh and
another from the sphere to our template shape, our map-
ping from 2D manifold to the template shape is their com-
position. Constructing a mapping between 2D square and
sphere can be understood to one analogous to latitudes and
longitudes on the globe.

All our template shapes are genus-0 (isomorphic to a sphere
— without holes). They have been pre-processed to have
642 vertices and 1280 faces using Meshlab’s [1] quadratic
vertex decimation [3]. Constructing a mapping between
a sphere and a template shape corresponds to finding a
mapping between faces of the spherical mesh and the faces
of the template shape. To find such a mapping we need to
deform the sphere to ensure that the corresponding faces
have similar areas. We to do this by minimizing the squared
difference of logarithm of triangle areas as the objective
using Adam [7] optimizer. This optimization is an offline
process and is part of preprocessing for the given category.

Parametrizing Articulation. Every template shape has a
defined part hierarchy that assigns every node a parent ex-
cept for the root node. A rigid transform is represented as
translation ¢ and rotation R. Every node, k has a rigid trans-
form associated with. This rigid transform is applied in the
frame of the part. Consider 7, to be the local rigid trans-
form at the node k represented using R and t. We define the
global rigid transform at node % as 7.

Te = Tio Ty 6]

where node [is the parent of node &

Barycentric Interpolation. We use barycentric interpola-
tion to compute the point on the surface of of the mesh for
every u € [0,1)2. Given a u we map the point to the surface
of the mesh of sphere, and then find the face it belongs to.

We use the vertices to this face to compute it’s barycentric
coordinates. We then use these computed barycentric co-
ordinates and the vertices on the corresponding face of the
articulated mesh to compute the 3D location of the point.

B. Implementation Details

Our implementation uses PyTorch [10]

B.1. Network Details

We use a Resnetl8 [5] encoder extracted with features af-
ter 4 blocks and 5 layer decoder. Our encoder is initial-
ized with pretrained ImageNet [2] features. The encoder-
decoder takes input an image and then outputs a 3D unit
vector per pixel. We convert this unit-vector to a 2D co-
ordinate u € [0,1)? which is used to parameterize our 2D
square.

B.2. Optimization

Parameterizing Part Transforms. We parameterize part
transforms as an axis, angle representation. Every part’s
axis serves as a bias in the network that is learned and is
same across the whole category. We predict the angle using
a deep network for every part k.

Parameterizing Camera Pose. We parameterize the cam-
era as orthographic similar to [6] where we predict R as a
unit quaternion ¢ € R*, s € (0,00),t € R?. Also, similar
to [8] we predictor 8 hypothesis for camera pose and part
transforms to ease the leaning process.

Training for Articulation. We first train our network to
only learn camera pose predictions (along with the CSM
predictor) for 10000 iterations. We then allow the model to
articulate for the rest of the training iteration. We train with
Adam [7] as the optimizer using a learning rate of 104,

B.3. Losses

Mask Consistency. We want to ensure that the rendered
mask Mengerea Of the mesh under camera w lies inside the
ground truth mask of the object. We compute it by com-
puting the euclidean distance field D.g; for the ground truth

https://nileshkulkarni.github.io/acsm/

mask summed over all the pixels in the rendered mask.

Lmask»consistency = Z Mrendered [29] Dedf LP] (2)
p

Mask Coverage. Enforcing consistency is not enough as it
only forces the object to lie inside the mask. We also want
to ensure that all the object pixels in the foreground should
be close to re-projection of some mesh vertex. This loss
competes against with the consistency loss objective.

Lmask—coverage = Z {)Iél‘l/l ||U - p” 3)
pely

Mask Loss. Our mask objective is a sum of these two com-
peting losses as follows.

Lmask = Lmask—consislency + Lmask—coverage (4)

Visibility Loss. We render depth map of the articulated
template shape under camera 7 as D, and for every pixel
we have the 2, as z-coordinate of the pixel in the camera
frame corresponding to the point 6(¢(C|[p])) on the surface
of the 3D shape.

Lyis = Z max(0, z, — Dz [P]);

p€Ely

p = m(3(o(Clp))))
(5)

Regularization Losses. Additionally, we also add the regu-
larization to translation prediction for part transforms, along
with an entropy penalty to encourage diversity of the multi-
pose predictor.

C. Evaluation
C.1. Transfer Keypoints using CSM

We use the predicted CSM map to transfer keypoints be-
tween source and target images by using their correspond-
ing canonical surface mappings C, and C;. For every
source keypoint at pixel p* we map the keypoint to the point
the non-articulated template shape, and then search for a
pixel on the target image that maps closest to this point.

Tiy = arg;nin(HMCt) = o(Csl" DI (©)

C.2. Importance of Ground Truth Masks

We study the impact of having foreground segmentation
from Mask-RCNN versus using human annotation for train-
ing A-CSM model. In these experiments we use pre-trained
Mask-RCNN [4] on 80 COCO [9] categories. We use
the CUB-2011 [11] dataset with segmentation from Mask-
RCNN [4] and the ground truth annotations to compared
the performance on tasks of PCK-Transfer and Key-Point

Table 1: We evaluate the performance of our model trained with
ground truth (GT) and Mask-RCNN segmentation on the task of
Keypoint (KP) Transfer and Keypoint (KP) Projection as described
in Table 1 and 2 of the main text. We report the performance on the
CUBS-2011 [1 1] dataset, and observe that there is not a significant
performance gap when using segmentations from Mask-RCNN.

Mask Source ‘ PCK Transfer KP Projection

GT (Humans) 42.6 46.8
Mask-RCNN [4] 38.5 45.5

(KP) Projection. We report results in Table 1 and observe
that though our method has a superior performance with
precise ground truth masks, the performance drop with us-
ing automatically generated inaccurate segmentation from
Mask-RCNN is not significant and our methods remains
competitive.

Evaluation using GT Masks. Our results in the main paper
for PCK Transfer use predicted masks to transfer keypoints
between two given images. We evaluated the performance
of transfer by using ground truth masks on the birds dataset
and observe that the performance changes on an average of
0.1 points. This implies that there is no significant disad-
vantage in using the predicted masks for evaluation.

D. Qualitative Sampled Results on 11 Cate-
gories

We randomly sample results for all the categories shown in
the paper show their visualizations in Figure 1, Figure 2,
Figure 3, Figure 4. These figure show articulations of tem-
plate shape for every input image along side the CSM pre-
diction for the foreground pixels. We observe consistent
CSM predictions for various functional regions of the ob-
ject. For instance, we can see the head of all the quadrupeds
is greenish in color which accurately represents its mapping
to green region on the template shape shown in the right-
most column. We show results over 11 categories with a
wide variety of articulations.

We also show results of our method on a few videos down-
loaded from the internet in the video file submitted along
with this supplementary. Our method is applied on a per
frame basis without any temporal smoothing. We show a
few screenshots from the video in Figure 5

Figure 1: Randomly sampled results on bisons, cows, and birds

ot

Figure 2: Randomly samped results on elephant, sheps, and rhinos

Figure 3: Randomly sampled results on horses, tapirs, and hippos

Figure 4: Randomly sampled results on giraffes and kangaroos

Canonical Surlace Map Articulated Mesh Canonical Surface Map Articulated Mesh

Canenical Surface Map Ariculated Mesh Canenical Surface Map Articulated Mesh

Figure 5: Screenshots of results from our method on the videos from the Internet

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

8]

(9]

(10]

(11]

Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Mat-
teo Dellepiane, Fabio Ganovelli, and Guido Ranzuglia.
MeshLab: an Open-Source Mesh Processing Tool. In Vit-
torio Scarano, Rosario De Chiara, and Ugo Erra, editors,
Eurographics Italian Chapter Conference. The Eurograph-
ics Association, 2008. 1

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. 1

Michael Garland and Paul S Heckbert. Surface simplifi-
cation using quadric error metrics. In SIGGRAPH. ACM
Press/Addison-Wesley Publishing Co., 1997. 1

Kaiming He, Georgia Gkioxari, Piotr Dolldr, and Ross Gir-
shick. Mask r-cnn. In ICCV, 2017. 2

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 1

Angjoo Kanazawa, Shubham Tulsiani, Alexei A. Efros, and
Jitendra Malik. Learning category-specific mesh reconstruc-
tion from image collections. In ECCV, 2018. 1

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 1

Nilesh Kulkarni, Abhinav Gupta, and Shubham Tulsiani.
Canonical surface mapping via geometric cycle consistency.
In ICCV, 2019. 1

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dolldr, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV,2014. 2

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban
Desmaison, Luca Antiga, and Adam Lerer. Automatic dif-
ferentiation in PyTorch. In NIPS Autodiff Workshop, 2017.
1

Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-
ona, and Serge Belongie. The caltech-ucsd birds-200-2011
dataset. 2011. 2

