
Supplementary: Self-Supervised 3D Human Pose Estimation Via
Part Guided Novel Image Synthesis

Proposed differentiable transformations

➢ Imposition of 3D articulation constraint (prior)
○ Discovery of Interpretable latent pose 

➢ Bridges representation gap 
○ non-spatial 3D pose to spatial part maps

➢ Pose bottleneck prevents leakage of appearance 
through pose → faithful disentanglement
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Figure 1: An overview of the full Encoder with details of the corresponding individual differentiable transformations.

This supplementary material is organized as follows:

• Sec. 1: Differentiable part transformation, Ts

• Sec. 2: Transforming local vectors to canonical pose

• Sec. 3: Self-supervised training procedure
Fig. 4, 5, and 6 summarize the challenges and
the proposed solutions for each self-supervised
objective used in our learning framework.

• Sec. 4: Details of the encoder-decoder architecture

• Sec. 5: Other implementation details

• Sec. 6: Additional qualitative results

1. Differentiable part transformation, Ts

The part transformation module takes a set of 2D pose
joint locations q and outputs a spatial part-wise pose map
using a fixed dictionary of canonical part maps as shown in
Fig 1, right panel. Each canonical part, φ(l)c is represented
by 2 anchored joints, rl(j1) and rl(j2). Here, l(j1) denotes

parent joint index of the limb l, whereas l(j2) denotes in-
dex of the child joint. Similarly, for a camera projected 2D
pose q ∈ R2J , the spatial joint locations for the limb l are
denoted by ql(j1) for the parent and ql(j2) for the child joint.

Note that, in the canonical part map, φ(l)c all the limbs
or body parts are aligned along the positive X-axis, i.e. a
vector directed from rl(j1) to rl(j2) makes an angle of 0◦

with respect to positive X-axis. Also, mid-point of the
line-segment joining rl(j1) to rl(j2) aligns with the ori-
gin (0, 0) while the corresponding spatial indices, u ∈
[−H/2, H/2]× [−W/2,W/2], whereH andW are respec-
tively height and width of the spatial map.

The rotation angle for the spatial transformation, S(l) re-
quired to align the canonical part along the vector directed
from ql(j1) to ql(j2) is computed as

θ(l) = −atan2((ql(j2)y − ql(j1)y ), (ql(j2)x − ql(j1)x ))

Here, ql(j1)x and q
l(j1)
y represent the X and Y compo-

nent of the spatial joint location ql(j1), and similarly for
ql(j2). Following this, a unidirectional scaling parameter
along both X and Y axis is computed as
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γ(l)x = dist(rl(j1), rl(j2))/dist(ql(j1), ql(j2)); γ(l)y = 1

Here, dist represents the Euclidean distance between the
2D spatial locations. We obtain the translation parameters,
(µ

(l)
x , µ

(l)
y ), as position of the mid-point between the joint

locations, (ql(j1)x , q
l(j1)
y ) and (q

l(j2)
x , q

l(j2)
y ). Finally, the spa-

tial transformation operation S(l) is parameterized by θ(l),
(γ

(l)
x , γ

(l)
y ), and (µ

(l)
x , µ

(l)
y ), which are indirectly a function

of (ql(j1), ql(j2), rl(j1)c , r
l(j2)
c ). Following this, the canonical

spatial indices u : (ux, uy), are transformed to u′ : (u′x, u
′
y)

using the following affine transformation,

[
ux
uy

]
=

[
γ
(l)
x cos θ(l) −γ(l)y sin θ(l) −µ(l)

x

γ
(l)
x sin θ(l) γ

(l)
y cos θ(l) −µ(l)

y

]
∗

u′xu′y
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
The above spatial index mapping of u′ to u is proceeded

by a differentiable image sampling [2] to obtain the final
spatially transformed part maps, i.e. φ(l)p = S(l) ◦ φ(l)c .

Note that, for the torso part, which is represented by four
anchored joints, a line segment through the mid-point of
upper left, upper right anchor joints and the mid-point of
lower left, lower right anchor joints is used to compute the
relative rotation θ(l). For torso, we allow scaling across both
X and Y as opposed to the other limbs, where scaling is
performed only along X.

2. Transforming local vectors to canonical pose

The primary neural output of the encoder network in-
cludes, a) a neck-pelvis to hip-line (line segment connect-
ing the two hip joints) angle (see Fig. 2(a)) represented by
two neural activations, i.e. the sin and cos component (with
tanh non-linearity). b) 13 three dimensional unit vectors for
13 limb joints, which are defined at their respective parent
relative local coordinate system (i.e. parent joint as the ori-
gin with axis directions obtained via Gram-Schmidt orthog-
onalization of the parent-limb vector and the face-vector).

Here, p3D for pelvis is always set at origin, i.e. (0, 0, 0).
And p3D for neck is set at (0, 0, α(j→Pa(j))), where
α(j→Pa(j)) is the fixed bone length of the line segment join-
ing Pa(j) to j with Pa(j) being the parent joint of neck,
i.e. the pelvis. Note that, α(j→Pa(j)) for each joint j, ex-
cept the root node (pelvis joint) is acquired from the prior
knowledge of relative human bone-lengths as a part of the
3D articulation constraints.

Following this, p3D for left-hip and right-hip is com-
puted by rotating the hip-line about the positive X-axis on
the YZ-plane. Note that, middle point of the hip-line aligns
with the origin.

Projection

Canonical system
Parent-relative local system

Progression of Forward kinematics
(a) (b) (c)

Figure 2: An overview of the proposed forward kinematic
transformation to obtain a canonically aligned 3D pose p3D

from a set of parent-relative local pose vectors.

After obtaining p3D for pelvis, neck, left-hip and right-
hip, p3D for rest of the joints is computed using a recursive
forward kinematic formulation. For each joint j (excluding
pelvis, neck and hip joints), the local coordinate system is
defined by three mutually perpendicular directions, a(j), b,
and n(j). Here, a(j) is a unit vector along the parent joint,
i.e. along the line connecting v3D(j) to v3D(Pa(j)). b is
the face-vector, i.e. a unit vector along the positive X-axis
and, nj is the unit perpendicular vector obtained by per-
forming cross product of a(j) with b. As discussed above,
the raw neural values for each joint j are represented as
(v3Dx (j), v3Dy (j), v3Dz (j)) (i.e. tanh non-linearity followed
by unit-vector normalization). The resultant direction in the
canonical coordinate system is computed as,

g̃(j) = v3Dx (j)a(j) + v3Dy (j)b+ v3Dz (j)n(j)

Here, v3Dx (j) is a scalar, whereas a(j) is a 3D vector in
the Canonical coordinate system. A unit vector normaliza-
tion of g̃(j) is represented as g(j). Then the final recursive
forward kinematic formulation is implemented as,

p3D(j) = p3D(Pa(j)) + α(Pa(j)→j)g(j)

Here, p3D(j) is the position vector of joint j in the 3D
canonical coordinate system. Finally, p3D : {p3D(j)}Jj=1.

3. Training algorithm

As discussed in the main paper, the overall training pro-
cedure (see Algorithm 1) includes two training stages, a)
optimization of the three consistency objectives, Lu

I , Lc
I ,

and Lseg and b) adaptation via decoupled energy minimiza-
tion, which includes minimization of two energy functions
Lp3D

z
andLas . We empirically validated the effectiveness of

the proposed energy-based adaptation procedure by remov-
ing this step from the self-supervised training algorithm, de-
noted as Ours(unsup) w/o adaptation in Table 1.
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Figure 3: Architecture details of the the encoder-decoder model. Here, the Channel-wise FC (fully-connected) layer is
inspired from [3], which is employed to allow interactions among the extreme spatial locations to account for diverse part
deformations. Note that, the appearance representation a is expected to be generic across all the frames depicting the same
person appearance (i.e. irrespective of the pose variations). Here, Res(., ., .) denotes a residual block as used in Resnet50.

/*Initialization of parameters */
θE : Trainable parameters of the Encoder E
θD: Trainable parameters of the Decoder

(includes D, DI , and Dseg)
for iter < MaxIter do

/* Decoupled energy minimization. */
if iter (mod 2) 6= 0 then

Update θE by optimizing Lp3D
z

and Las in
separate Adagrad optimizers on frozen θD.

else
Update θD by optimizing Lp3D

z
and Las in

separate Adagrad optimizers on frozen θE .
end
/* Optimize the consistency objectives. */
Update (θE , θD) by optimizing Lu

I , Lc
I , and

Lseg in separate Adagrad optimizers.
end

Algorithm 1: Training algorithm with the proposed
adaptation via decoupled energy minimization.

The proposed energy minimization procedure to match
the predicted 2D pose with the true 2D pose distribution is
motivated from energy-based Generative Adversarial Net-
works [5]. Here, the decoder parameters are updated to re-
alize a faithful Îpz

as
(i.e. natural looking), as the frozen en-

coder expects Îpz
as

to match its input distribution of real im-
ages (i.e. Is or It) for an effective energy minimization (i.e.
the pose and appearance extraction). Here, the encoder can
be perceived as a frozen energy network as used in energy-
based GAN [5]. A similar analogy applies while updating

Table 1: Ablation analysis, highlighting importance of var-
ious constraints and regularization in the proposed self-
supervised 3D pose estimation framework.

Method
(unsup.)

MPJPE(↓) on
H36M

3DPCK(↑) on
MPI-3DHP

Ours(unsup) w/o Tfk ◦ Tc 126.8 51.7
Ours(unsup) w/o msal 189.4 35.7
Ours(unsup) w/o adaptation 123.7 54.6
Ours(unsup) 99.2 77.4

the encoder parameters with gradients from the frozen de-
coder. Each alternate energy minimization step is preceded
by an overall optimization of the above consistency objec-
tives, where both encoder and decoder parameters are up-
dated simultaneously as shown in Algorithm 1.

Figure 4, 5, and 6 clearly list the challenges and the pro-
posed solutions for each self-supervised objective.

4. Architecture
The architecture is an encoder-decoder setup where the

encoder E encodes the pose and appearance information
from an input image I . The decoder takes the concatenated
representation of the FG appearance, a and pose, p as in-
put to obtain two output maps, i) a reconstructed image Î ,
and ii) a predicted part segmentation map ŷ via a bifurcated
CNN decoder. The common decoder branch, D consists of
a series of up-convolutional layers conditioned on the spa-
tial pose map p at intermediate layer inputs (i.e. multi-scale
pose conditioning). DI and Dseg follow up-convolutional



layers to their respective outputs. Figure 3 shows the de-
tailed architecture.

Challenge: Unavailability of a direct GT corresponding to 

● Increased possibility of attaining degenerate solution 
(mode-collapse)

● Model focuses on common BG between Is and It instead 
of attending the FG human.

Proposed Solution

● Select pairs with completely diverse BG (far away frames)

○ FG human as the only consistent appearance cue

● Use a rough estimate of FG saliency mask,

○ Establishes 1:1 correspondence (avoids degeneracy)

● Loss function:

Figure 4: A summary of the first self-supervised objective.

Challenge: Both          and           are unreliable   

● A      depends on an unreliable predicted pose pt
●           captures general visual saliency (not human-specific)

Proposed Solution

● Make use of reliable unpaired 2D pose data qz
● Training objective inspired from simultaneous appearance 

invariance and pose equivariance

● Part segmentation on reliable 2D pose samples qz

Figure 5: Summary of the second self-supervised objective.

Challenge: Model inculcates discrepancy between the predicted 
pose and the true pose distributions

●                        rely on true pose 

● whereas,         relies on predicted pose 

Proposed Solution: Adaptation via energy minimization

● Two energy functions defined at the output of the secondary 
encoder via cyclic auto-encoding:

                                 

● We avoid a direct encoder decoder interaction during gradient 
back-propagation, by updating the encoder parameters, while 
freezing the decoder parameters and vice-versa.

● Inspired from energy-based GAN. Reutilization of encoder and 
decoder as energy function via decoupled parameter update 

○ avoids the use of ad-hoc adversarial discriminator 

○ simplified training regime

Figure 6: Summary of energy-based adaptation objective.

5. Other implementation details
While training, we use separate AdaGrad optimizers [1]

for each loss term at alternate training iterations thereby
avoiding manual loss balancing. The hyperparameter β,
in the loss function Lu

I avoids the model from producing
degenerate solutions (Fig. 5B, main paper, results without
msal). However, considering unreliability of the saliency
prediction algorithm, we reduce the strength of β after the
model gains certain level of learning stability (i.e. after first
200k iterations). This helps to improve the model’s ability
to disentangle FG from the cluttered BG even beyond the
unreliablemsal predictions as a result of the pose dependent
self-supervised consistency objectives. We use batch-size
of 16 with an initial learning rate of 0.001 on a Tesla P100
machine (16GB VRAM). We train the model for ∼1600k
learning iterations.

6. Additional results
Here we show additional qualitative results highlighting

the effectiveness of the disentangled factors beyond the in-
tended primary task of 3D pose estimation. We manipu-
late them to analyze their effect on the decoder synthesized



A. Results on H36M dataset (in-studio)

B. Results on 3DPW dataset (unseen, in-the-wild samples) D. Results on 3DHP

C. Results on YTube dataset (in-the-wild)

Figure 7: Qualitative results on 4 different datasets. Failure cases are highlighted in magenta which specifically occur in
presence of multi-level inter-limb occlusion (see 3DPW failure case) and very rare, athletic poses (see YTube first failure
case) . However, the model faithfully attends to single-level occlusions, enabled by the depth-aware part representation.

A. H36M, in-studio dataset B. On YTube, in-the-wild dataset
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Figure 8: Novel image synthesis via latent manipulation of a, p and c on H3.6M dataset. It also shows the effect of indepen-
dent non-rigid (pose transfer) and rigid (view synthesis) variations as a result of explicit disentanglement.

A. H36M, in-studio dataset B. On YTube, in-the-wild dataset
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Figure 9: Pose transfer results on wild images from YTube dataset with diverse FG and BG appearance, and pose variations.

Table 2: Segmentation results on mean IOU (↑) for H3.6M.

Methods Sup. FG vs BG FG Parts

SURREAL Synth. [4] Full segmentation 46.35 42.91
SURREAL Real [4] Full segmentation 49.61 46.32
Ours(weakly-sup) Full-2D pose 47.86 44.24
Ours(unsup) No supervision 45.54 42.36

output image. In Fig. 8 and Fig. 9, we show pose trans-
fer results where the pose obtained from an image is trans-
ferred to the appearance of another. However, in view syn-
thesis, we randomly vary the camera extrinsic values in c.
The results shown are obtained from Ours(unsup) model,

which is trained on the mixed YTube+H3.6 dataset. This
confirms our superior disentanglement performance. Fig. 7
depicts qualitative results for the primary 3D pose estima-
tion task using Ours(weakly-sup) model explained in main
paper. In Fig. 7B, we show results on the unseen 3DPW
dataset, where the model has not seen this dataset even dur-
ing self-supervised training. A consistent performance on
such unseen dataset further establishes generalizability of
the proposed learning framework. We also show results on
MPI-INF-3DHP and in-the-wild YTube dataset.

Quantitative comparison of part segmentation on Hu-
man3.6M is reported in Table 2. We achieve comparable



results against the prior arts, in absence of additional super-
vision as used in prior arts.
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