
Supplementary: Towards Inheritable Models for Open-Set Domain Adaptation

This supplementary is organized as follows:

• Sec. 1: Derivation of Result 1

• Sec. 2: Algorithm and implementation details
– Architecture (Sec. 2.1, Table 1)

– Inheritable model training (Sec. 2.2, Algo. 1)

– Feature-splicing algorithm (Algo. 2)

– Target domain adaptation (Sec. 2.3, Algo. 3)

• Sec. 3: Alternate methods to generate OOD samples

• Sec. 4: Miscellaneous

– Training time comparison (Sec. 4.1)

– Dataset description (Sec. 4.2)

1. Derivation of Result 1
We derive the result using Theorem 3 in [1], which pro-

vides a generalized learning bound for a given pair of source
and target domains. We begin by quoting the theorem, fol-
lowing which we apply the theorem to our setting. For quot-
ing the theorem, we use the notations given in [1].

Theorem 3 [1]. Let H be a hypothesis space of VC dimen-
sion d. Let US and UT be unlabeled samples of size m′

each, drawn from DS and DT respectively. Let S be a la-
beled sample of size m generated by drawing βm points
from DT and (1 − β)m points from DS and labeling them
according to fS and fT , respectively. If ĥ ∈ H is the em-
pirical minimizer of ε̂α(h) on S and h∗T = minh∈H εT (h)
is the target error minimizer, then for any δ ∈ (0, 1), with
probability at least 1− δ (over the choice of samples),

εT (ĥ) ≤ εT (h∗T ) +A+ 2(1− α)B (1)

where,

A = 4

√
α2

β
+

(1− α)2

1− β

√
2d log(2(m+ 1)) + 2 log(8/δ)

m
(2)

B =
1

2
d̂H∆H(US ,UT ) + 4

√
2dlog(2m′) + log(8/δ)

m′
+ λ (3)

and the error ε̂α(h) = αε̂T (h)+(1−α)ε̂S(h), with α being
the relative importance given to the empirical target error.
Here, fS and fT are the ground-truth labeling functions for
the source and the target domains. Further note that, the
notations used to describe the errors εT and ε̂α are different
from the notations we use in our paper (for instance, we
refer to the target error as ξq). See [1] for more details.

In our formulation, we make two observations. Firstly, the
objective of our adaptation step is to improve the perfor-
mance on the target domain. This entails a choice of α = 1
for defining the empirical error. Secondly, we do not have
any data from the source domain, which implies β = 1.

Now, with α = 1, the last term in Eq. 1 vanishes. Further,
to evaluate Eq. 2 with α = 1, β = 1 which obtains an inde-
terminate form, we take the limit as α→ 1, β → 1,

lim
α→1,β→1

A = 4

√
2d log(2(m+ 1)) + 2 log(8/δ)

m
(4)

This reduces Eq. 1 to,

εT (ĥ) ≤ εT (h∗T ) + 4

√
2d log(2(m+ 1)) + 2 log(8/δ)

m
(5)

Now, we describe the result. We argue that the knowledge
of class-separability (i.e. the knowledge of how the classes
are distinguished) is inheritable, by demonstrating that the
inheritability criterion holds for shared classes.

During adaptation, we select the top-k percentile target in-
stances based on the value of w. In Sec. 5.3c of the pa-
per, we empirically verify that the pseudo-labeling preci-
sion for the top-k target instances is close to 1 (see Fig.
5B of the paper for epoch-0 at k = 15). Therefore,
the pseudo-labeling process can be considered as obtain-
ing target-shared instances with a small noise in the labels.
For these instances, by minimizing Linh, we search the hy-
pothesis space H for the empirical minimizer of ξqsh , i.e.
ĥt = argminh∈H ξ̂qsh(h). Thus, considering the correctly
pseudo-labeled target instances as the sample S of size m
in Eq. 5, ĥt as the empirical minimizer of ξqsh , and h∗t as
the optimal hypothesis for qsh we can obtain the relation in
Eq. 5 for the target-shared distribution (qsh) as,
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Table 1. Architecture of vendor and client models. ‘FC(Inp, Out)’
denotes Fully-Connected Layers with ‘Inp’ input nodes and ‘Out’
output nodes. BN denotes BatchNorm layer

Component Layers

Es, Et

FC(2048×1024) → ELU →
FC(1024×1024) → BN → ELU →
FC(1024×256) → ELU →
FC(256×256) → BN → ELU

Gs FC(256×|Cs|)
Gn FC(256×K)

ξqsh(ĥt) ≤ ξqsh(h
∗
t )+4

√
2d log(2(m+ 1)) + 2 log(8/δ)

m
(6)

Hence, we obtain Result 1 of the paper, which is stated as,

Result 1. Let H be a hypothesis class of VC dimension
d. Let S be a labeled sample set of m points drawn from
qsh. If ĥt ∈ H be the empirical minimizer of ξqsh on S,
and h∗t = argminh∈H ξqsh(h) be the optimal hypothesis
for qsh, then for any δ ∈ (0, 1), we have with probability of
at least 1− δ (over the choice of samples),

ξqsh(ĥt) ≤ ξqsh(h
∗
t )+4

√
2d log(2(m+ 1)) + 2 log(8/δ)

m︸ ︷︷ ︸
the term ε in Eq. 1 of the paper

(7)

Note that, as we enforce the loss Linh while learning the
target model ht during adaptation, we prune the hypothesis
space while searching for all such hypotheses which sat-
isfy the above condition. This is the inheritability criterion
obtained using target-shared instances, since we achieve
the condition using unlabeled target instances Dt and the
source model hs (which pseudo-labels the target instances).
In this manner, the inheritability criterion is satisfied for
the target-shared instances, making the knowledge of class-
separability inheritable for the adaptation task.

Furthermore, Ltune can be seen as a way of self-supervising
the target model. We show in Sec. 5c of the paper that the
precision of the target model iteratively increases as a result
of adaptation (Fig. 5B of the paper, see “epoch-0” through
“converged”). Therefore, the self-supervision yields an in-
creasing number of correctly labeled target-shared instances
over iterations. This effectively tightens the bound in Eq. 7
(increasing m in Eq. 7 reduces the last term), resulting in a
superior adaptation guarantee.

2. Algorithm and implementation details
In this section we provide the pseudo-code for the model

training and the feature-splicing algorithm and present the
implementation details.

Algorithm 1 Pseudo-Code for inheritable model training
1: require: labeled source dataset Ds, parameters
θMs , θEs , θGs , θGn of Ms, Es, Gs, Gn respectively,
hyperparametersK, d, and no. of negative instances ηu.

Step 1: Pre-training on the source dataset
2: while Lb has not converged do
3: (Xs, Ys)← batch sampled from Ds
4: Ŷs ← σ(Gs(Fs(Xs)))

5: compute mean Lb for the batch using Ŷs and Ys
6: update θMs

, θEs
, θGs

by minimizing Lb using the
Adam optimizer

7: end while

Step 2: Training the inheritable model
8: Dn ← FeatureSplicingAlgorithm(Ds, Ms, K, d, ηu)
9: while Ls has not converged do

10: (Xs, Ys)← batch sampled from Ds
11: (Un, Yn)← batch sampled from Dn
12: Ŷs ← σ(G(Fs(Xs)))

13: Ŷn ← σ(G(Es(Un)))

14: compute mean Ls for the batch using Ŷs, Ŷn, Ys, Yn
15: update θEs , θGs , θGn by minimizing Ls using the

Adam optimizer
16: end while

2.1. Architecture

For experiments on Office-31 and Office-Home, we
choose ResNet-50 upto the last AvgPool layer (2048 dimen-
sions) as the backbone network for Ms. For experiments on
VisDA dataset, we use the backbone as VGG-16 upto the
last pooling layer (of shape 7 × 7 × 512), followed by a
global AvgPool along each channel to obtain an output of
512 dimensions. Modules Es, Et, Gs, Gn are composed of
fully connected layers, batch norm layers and non-linearity
(ELU) as shown in Table 1.

2.2. Vendor trains an inheritable model

The vendor has access to an annotated source datasetDs
using which the vendor trains an inheritable model hs. See
Algorithm 1 for the pseudo-code. During training, we have
the following image augmentations: random rotations, flip,
color jitter and random crop. We pre-train the parameters
of the components {Ms, Es, Gs} on the source domain by
minimizingLb (L2-L7 in Algo. 1). We then freeze the back-
bone Ms and perform feature splicing (L8 in Algo. 1). See
Algo. 2 for the pseudo-code for the feature splicing opera-
tion. We apply feature-splicing at the last layer ofMs to ob-
tain negative instances un. Specifically, L8-L10 in Algo. 2
shows the feature splicing operation (φd), where the top-
d percentile activations are replaced. In this manner, we
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Algorithm 2 FeatureSplicingAlgorithm
1: require: labeled source dataset Ds, parameters θMs of
Ms, hyperparameter K, d, no. of negative instances ηu

. Let |D| denote the cardinality of a setD, [·] denote the
indexing operation, ·||· denote the append operation
and M denote the output dimensionality of Ms (i.e.
M = 2048 for ResNet-50 andM = 512 for VGG-16)

Step 1: Generating negative instances
2: Number of dimensions to splice ηd =M× d/100
3: Un ← {} . Empty list
4: while |Un| ≤ ηu do
5: (xcis , x

cj
s )← sample 2 instances fromDs belonging

to different classes i.e. ci, cj ∈ Cs where i 6= j
6: ucis ←Ms(x

ci
s )

7: u
cj
s ←Ms(x

cj
s )

8: idx← top ηd entries in argsort(ucis )
9: un ← ucis

φd(u
ci
s , u

cj
s )

10: un[idx]← u
cj
s [idx]

11: Un ← Un || un
12: end while

Step 2: Assigning labels to negative instances
13: PerformK-means clustering on Un and assign a unique

negative class to each cluster
14: Dn ← {(un, yn) : un ∈ Un, yn = negative class label

of un obtained from the previous step}

15: return Dn

generate ηu = 20000 negative instances for Office-31 and
ηu = 50000 for Office-Home and VisDA. We label these
instances by performing a K-means clustering on the ob-
tained features (L13-L14 in Algo. 2). Using Ds and Dn we
train {Es, Gs, Gn} by minimizing Ls (L9-L16 in Algo. 1).

2.3. Client adapts to the target domain

The client has access to unlabeled target dataset Dt and
vendor’s inheritable model hs = {Fs, G}, using which
the client performs adaptation to the target domain. See
Algo. 3 for the pseudo-code. We use image augmentations
as mentioned in Sec. 2.2. We obtain pseudo-labeled target
instances (top-k percentile, based on the instance-level in-
heritability value w) into a collection Dpt (L2-L15). There-
after, during adaptation, each batch contains pseudo-labeled
target instances (L18) and unlabeled target instances (L21).
We normalize the weights obtained for the unlabeled target
instances (as mentioned in Sec. 5.1b of the paper), with the
maximum weight in a batch (L28-L30). We then train Ft to
adapt to the target domain by minimizing Linh + Ltune.

Algorithm 3 Pseudo-Code for target domain adaptation
1: require: unlabeled target dataset Dt, parameters θFs ,
θFt , θGs , θGn of {Fs, Ft, Gs, Gn}, hyperparameter k.

. Let [·] denote the indexing operation, and, ·||· denote
the append operation

Step 1: Pseudo-labeling process
2: Number of instances to pseudo-label ηp = |Dt|×k/100
3: W ← {} . Empty list
4: Yp ← {} . Empty list
5: Xp ← {} . Empty list

6: for xt in Dt do
7: ŷp ← σ(G(Fs(xt)))
8: yp ← argmaxci∈Cs ŷp[ci]
9: w ← maxci∈Cs ŷp[ci]

10: W ←W || w
11: Yp ← Yp || yp
12: Xp ← Xp || xt
13: end for
14: idx← top ηp entries in argsort(W )
15: Dpt ← (Xp[idx], Yp[idx])

Step 2: Adaptation process
16: Initialize θFt

from θFs

17: while Linh + Ltune has not converged do

18: (Xp, Yp)← batch sampled from Dpt .
19: Ŷp ← σ(G(Ft(Xp)))

20: compute mean Linh for the batch using Ŷp, Yp

21: Xt ← batch sampled from Dt
22: for each xt in Xt do
23: ŝ← Σci∈Cs σ(G(Ft(xt)))[ci]
24: w ← maxci∈Cs σ(G(Fs(xt)))[ci]
25: zsht ← σ(Gs(Ft(xt)))
26: zukt ← σ(Gn(Ft(xt)))
27: end for

28: for each xt in Xt do . Normalize weights
29: w′(xt)← w(xt)/(maxxt∈Xt

w(xt))
30: end for
31: compute mean Ltune using w′, ŝ, zsht , z

uk
t

32: update θFt by minimizing Linh + Ltune using the
Adam optimizer

33: end while
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3. Alternate methods to generate OOD samples
We argue in Sec. 4.1 of the paper that an inheritable

model for the task of open-set DA should have the ability to
mitigate the overconfidence issue. We achieve this by train-
ing an out-of-distribution (OOD) classifier (Gn). We ex-
plored potential techniques to generate OOD samples, and
as mentioned in Sec. 4.1b in the paper, we found that the
feature-splicing technique works well in practice for train-
ing an inheritable model for open-set DA. In Table 2, we
report the adaptation performance on Office-31 using inher-
itable models trained with different OOD generation strate-
gies. Here, we discuss the two other strategies we explored.

a) Linear interpolation between classes. We randomly
choose a pair of source instances corresponding to different
classes, and obtain a negative feature by linearly interpolat-
ing between the features of the two instances as,

un = γ × ucis + (1− γ)× ucjs (8)

where γ ∼ Beta(2, 2) as proposed in [6], ucis = Ms(x
ci
s ),

u
cj
s = Ms(x

cj
s ), and xcis , x

cj
s are two instances sampled

from different source classes, i.e. ci, cj ∈ Cs (i 6= j). This is
inspired by techniques such as mixup [7, 6] which encour-
age less confident predictions on the interpolations of latent
features. As reported in Table 2, we find that linear interpo-
lation performs worse than feature-splicing. This is because
linear interpolation is less effective in producing OOD sam-
ples as it yields features from a constrained region between
the source classes (as discussed in Sec. 4.1b of the paper,
and shown in Fig. 3A of the paper). In contrast, feature-
splicing is able to mimic plausible OOD samples through
the suppression of class-specific traits.

b) Random suppression of the most active features.
Given a latent-space feature, we randomly scale down the
values of top-15 percentile activations as,

un = Γ� us (9)

where us = Ms(xs) and Γ is a weight vector containing
γ ∼ uniform(0.2, 0.3) at the indices corresponding to the
top-15 percentile activations, and 1 elsewhere, and� the de-
notes element-wise product. In Table 2, we observe that this
performs similar to feature-splicing. Essentially, by sup-
pressing the top activations, we obtain a feature which is
devoid of the class-specific traits (Sec. 4.1b of the paper)
thereby resulting in a plausible OOD sample. However, this
method of random suppression requires a hyperparameter
search to identify an optimal range for the scale of suppres-
sion (in this case, 0.2 to 0.3). The feature-splicing technique
is meant to avoid this hyperparameter search, by choosing
the appropriate replacement for the class-discriminative ac-
tivations for a given instance.

Table 2. Adaptation performance (OS) of different OOD genera-
tion strategies, on Office-31 (ResNet-50). |Cs| = 10, |Ct| = 20.
See Sec. 3 for Interpolation (Sec. 3a) and Suppression (Sec. 3b).

Method A→W A→D D→W W→D D→A W→A Avg

Interpolation 83.4 86.7 95.1 96.9 79.3 76.2 86.3
Suppression 91.0 93.3 96.4 99.6 90.2 88.2 93.1

Feature-splicing 91.3 94.2 96.5 99.5 90.1 88.7 93.4

4. Miscellaneous
In this section, we provide the details of the machine and
the datasets used for experiments.

4.1. Training time comparison

The machine used to run all our experiments has the fol-
lowing hardware specifications. CPU: Intel Core i7-7700K,
GPU: NVIDIA GeForce GTX 1080 with CUDA v8.0.61.

The training time reported in Sec. 5.3e in the paper is ob-
tained on the machine with the above specifications. For
a fair evaluation, we compare the training time required
for our method and the previous state-of-the-art method
STA [2] on identical settings. We use a batch size of 32,
with identical optimizers and learning rates for adaptation.

a) STA. The STA method adapts to target domain in two
steps. The first step trains a multi-binary classifier and a
domain discriminator using both source and target samples
(16 instances each, in a batch) and the second step involves
adaptation to the target domain using both source and target
samples (again, 16 instances from each domain). For both
A→D and A→W, on an average, Step 1 took 177s while
Step 2 took 398s.

b) Ours. For our method, we fixed all hyperparameters to
the values as mentioned in Sec. 5.1b of the paper. Overall,
our method is much more efficient in the case of multiple
clients. This is clearly because in our approach, the source
training is done only once (by the vendor) requiring about
250s. Following this, both the clients use the same vendor
model to adapt to their respective target domains requiring
69s on an average. This is contrast to STA where each client
has to train on the vendor’s source dataset, requiring addi-
tional computation during adaptation.

4.2. Dataset description

In our experiments, we follow STA [2] to choose the label
sets. See Fig. 1 for sample images from each dataset.

The Office-31 [4] dataset contains 4652 images from 3 do-
mains: Amazon (A), DSLR (D) and Webcam (W). In alpha-
betical order, the first 10 classes are used as shared classes
and, the classes 21-31 are chosen as target-unknown.

The Office-Home [5] dataset was curated by crawling the
web, and thus exhibits a higher domain-shift as compared
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Figure 1. Sample images from the benchmark datasets: Office-31 showing images belonging to class “Speaker”, Office-Home showing
images belonging to class “Flower” and VisDA showing images belonging to class “Truck”.

to the Office-31 dataset. It contains 65 classes of objects
with about 15,500 images split into four domains: Art (Ar),
Clipart (Cl), Product (Pr) and Real-World (Rw). The first
25 classes in alphabetical order are chosen as shared classes
and classes 26-65 are chosen as the target-unknown classes.

The VisDA[3] dataset exhibits a significant amount of
domain-shift between its two domains: Synthetic (S) and
Real World (R) having about 150k images and 56k images
respectively. The Synthetic domain was created by render-
ing 3D models. The following classes are selected as the
shared classes, Cs = {bicycle, bus, car, motorcycle, train,
truck}, while the target-unknown classes are chosen as, Cukt
= {aeroplane, horse, knife, person, plant, skateboard}.
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