
Supplementary: Universal Source-Free Domain Adaptation

This Supplementary is organized as follows,

• Sec. 1: Notations

• Sec. 2: Implementation details

– Procurement Stage. (Sec. 2.1, Algo. 1)

– Deployment Stage. (Sec. 2.2)

• Sec. 3: Additional Results

– Pretraining the backbone network on Places in-
stead of ImageNet. (Sec. 3.1, Table 2)

– Space and Time complexity analysis. (Sec. 3.2)

– Varying label-set relationship. (Sec. 3.3, Fig. 1)

– Sensitivity analysis. (Sec. 3.4, Fig. 2)

– Closed-set adaptation. (Sec. 3.5, Table 3)

– Accuracy on source dataset after Procurement.
(Sec. 3.6)

– Incremental one-shot classification. (Sec. 3.7)

– Feature space visualization. (Sec. 3.8, Fig. 3)

• Sec. 4: Miscellaneous

– Specifications of computing resources. (Sec. 4.1)

– References to code. (Sec. 4.2)

1. Notations
We summarize the notations used in the paper in Table. 1.

2. Implementation Details
Here, we describe the network architectures and the train-

ing process used for the Procurement and the Deployment
stages of our approach.

2.1. Procurement Stage

a) Design of the classifier D. Keeping in mind the possibil-
ity of the model encountering an additional domain shift after
having adapted from the source domain to a target domain
(e.g. encountering domain W after performing the adapta-
tion A→ D in Office-31 dataset), we design the classifier’s
architecture in a manner which allows for modification in
the number of negative classes post Procurement.

Table 1: Notation Table

Symbol Description
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p Marginal source input distribution
pn Marginal negative feature distribution
q Marginal target input distribution
ps̄ Marginal source-private distribution
qt̄ Marginal target-private distribution

P (us|ci) Gaussian prior for the source samples
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M Backbone model
Fs Source feature extractor
Ft Target feature extractor
G Decoder
D Classifier

Se
ts

Ds Labeled source dataset
Dn Labeled negative dataset
Dt Unlabelled target dataset
Cs Label-set of the source domain
Cn Label-set of the negative samples
Ct Label-set of the target domain
C Shared label-set
Cs Source-private label-set
Ct Target-private label-set
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(xs, ys) Paired source samples
(xn, yn) Paired negative samples
xt Unpaired target samples
vs, vt Output of M for source / target resp.
v̂s Output of G

us, ut Output of Fs / Ft resp.
ur Samples drawn from class priors
µci Mean feature us for ci ∈ Cs
Σci Covariance of us for ci ∈ Cs
d Output of D (logit vector)

σ(k)(·) kth element of the softmax vector
ẑ Softmax over |Cs|+ |Cn| logits
z̃s Softmax over |Cs| logits
z̃n Softmax over |Cn| logits

w(·), w′(·) SSM and its complement resp.



Algorithm 1 Negative dataset generation using Image-composition

1: input: Image pair (I1, I2) ∈ Ds. (image shape HxWx3 = 224x224x3)
2: k ←− 30
3: x1, x2, y1, y2←− rand(0,W ), rand(0,W ), rand(0, H), rand(0, H)
4: cx, cy ←− rand(W/2− k,W/2 + k), rand(H/2− k/3, H/2 + k/3)
5: dx, dy ←− rand(W/2− k/3,W/2 + k/3), rand(H/2− k,H/2 + k)

Horizontal Splicing
6: s1←− quadratic_interpolation([(0, y1), (cx, cy), (223, y2)])

Vertical Splicing
7: s2←− quadratic_interpolation([(x1, 0), (dx, dy), (x2, 223)])

Defining Masks
8: m1 ←− mask region below s1
9: m2 ←− mask region to the left of s2

Merging alternate regions to create composite images
10: Ia←−m1 ∗ I1 + (1−m1) ∗ I2
11: Ib←−m2 ∗ I1 + (1−m2) ∗ I2
12: Ic←−m1 ∗ I2 + (1−m1) ∗ I1
13: Id←−m2 ∗ I2 + (1−m2) ∗ I1

14: return Ia, Ib, Ic, Id

We achieve this by maintaining two separate classifiers
during the Procurement stage -Dsrc that operates on the pos-
itive source classes, and, Dneg that operates on the negative
source classes (see architecture in Table 5). The final clas-
sification score is obtained by computing softmax over the
concatenation of logit vectors produced by Dsrc and Dneg.
Therefore, the model can be retrained on a different number
of negative classes post Deployment (using another nega-
tive class classifier D2

neg), thus preparing it for a subsequent
adaptation step to another domain.

b) Negative dataset generation. We generate the negative
dataset Dn by compositing images taken from different pos-
itive source classes, as described in Algo. 1. We generate
random masks using quadratic splines passing through a cen-
tral image region (lines 3-9). Using these masks, we merge
alternate regions of the images, both horizontally and verti-
cally, resulting in 4 negative images for each pair of images
(lines 10-13). To effectively cover the inter-class negative
region, we randomly sample image pairs from Ds belonging
to different classes, however we do not impose any constraint
on how the classes are selected (for e.g. one can composite
images from an animal and a non-animal class). We choose
5000 pairs for tasks on Office-31, Office-Home and VisDA
datasets, and 12000 for ImageNet-Caltech. Since the input
source distribution (p) is fixed we first synthesize a negative
dataset offline (instead of creating them on the fly) to en-
sure finiteness of the training set. The training algorithm for
USFDA is given in Algo. 1 of the paper.

c) Justification of Lp. The cross-entropy loss enforced on
the likelihoods (referred to as Lp in the paper) not only
enforces intra-class compactness but also ensures inter-class
separability in the latent u-space. Since the negative samples
are only an approximation of the future target private classes
that are expected to be encountered, we choose not to employ
this loss for negative samples. Such a training procedure,
eventually results in a natural development of bias towards
the confident positive source classes. This subsequently
leads to the placement of source clusters in a manner which
enables source-free adaptation (See Fig. 4C of the paper).

d) Minibatch negative sampling strategy. We create an
unbiased batch of training samples for a training iteration
by sampling equal number of positive and negative samples
from the dataset. Particularly, we sample 32 positive source
class images (b+ve = 32) and 32 negative images (b−ve =
32) for each training iteration. This gives an effective batch
size of b+ve + b−ve = 64.

e) Use of multiple optimizers for training. In the pres-
ence of multiple losses, we subvert a time-consuming loss-
weighting hyperparameter search by making use of multiple
Adam optimizers during training. Essentially, we define a
separate optimizer for each loss term, and optimize only
one of the losses (chosen in a round robin fashion) in each
iteration of training. We use a learning rate of 0.0001 for
each Adam optimizer. Intuitively, the moment parameters in
each Adam optimizer adaptively scales the corresponding
gradients, thereby avoiding loss-scaling hyperparameters.



f) Label-Set Relationships. For Office-31 dataset in the
UDA setting, we use the 10 classes shared by Office-31 [5]
and Caltech-256 [1] as the shared label-set C. These classes
are: back_pack, calculator, keyboard, monitor, mouse, mug,
bike, laptop_computer, headphones, projector. From the
remaining classes, in alphabetical order, we choose the first
10 classes as source-private (Cs) classes, and the rest 11 as
target-private (Ct) classes. For VisDA, alphabetically, the
first 6 classes are considered as C, the next 3 as Cs and
the last 3 comprise Ct. The Office-Home dataset has 65
categories, of which we use the first 10 classes as C, the next
5 for Cs, and the rest 50 classes as Ct.

2.2. Deployment Stage

a) Architecture. The network architecture used during the
Deployment stage is given in Table 6. Note that the decoder
G used during the Procurement stage, is not available during
Deployment, restricting complete access to the source data.

b) Training. The only trainable component is the Feature
Extractor Ft, which is initialized from Fs. Here, the SSM is
calculated by passing the target images through the network
trained on source data (source model), i.e for each image
xt, we calculate ŷ = σ(D ◦ Fs ◦M(xt)). Note that the
softmax is calculated over all |Cs|+|Cn| classes. This is done
by concatenating the outputs of Dsrc and Dneg, and then
calculating softmax. Then, the SSM is determined by the
exponential confidence of a target sample, where confidence
is the highest softmax value in the categories in Cs.

3. Additional Results

3.1. Pretraining the backbone network on Places
instead of ImageNet.

We find that widely adopted standard domain adaptation
datasets such as Office-31 [5] and VisDA [4] often share a
part or all of their label-set with ImageNet. Therefore, to
validate our method’s applicability when initialized from
a network pretrained on an unrelated dataset, we attempt
to solve the adaptation task A→D in Office-31 dataset by
pretraining the ResNet-50 backbone on Places dataset [8].
In Table 2 it can be observed that our method outperforms
even source-dependent methods (e.g. UAN [7], which is also
initialized a ResNet-50 backbone pretrained on Places). In
contrast to our method, the algorithm in UAN [7] involves
ResNet-50 finetuning. Therefore, we also compare against a
variant of UAN with a frozen backbone network, by inserting
an additional feature extractor that operates on the features
extracted from ResNet-50 (similar to Fs in the proposed
method). The architecture of the feature extractor used for
this variant of UAN is outlined in Table 4. We observe that
our method significantly outperforms this variant of UAN
with lesser number of trainable parameters (see Table 2).

Table 2: Evaluation of the proposed method on A→D task of
Office-31 [5] dataset, pretraining the ResNet-50 backbone (M ) on
Places instead of Imagenet. Note that, we set |C|/|Cs ∪ Ct| = 0.32,
similiar to the setting used in Table 2 of the paper. Additionally,
the last two columns of the table show a comparison between
our method and UAN [7] with regard to the number of trainable
parameters and total training time for adaptation.

Method
ResNet-50
finetuning

Avg. per-class
accuracy, Tavg

Number of
Trainable Params.

Training time
for Adaptation

UAN* 3 60.98 26.7 Million 280s

UAN* 7 52.48 5.6 Million 125s

USFDA 7 62.74 3.5 Million 44s

3.2. Space and Time complexity analysis.

On account of keeping the weights of the backbone net-
work (M ) frozen throughout the training process, and devoid
of networks such as adversarial discriminator our method
makes use of significantly lesser trainable parameters when
compared to previous methods such as UAN [7] (See Ta-
ble 2). Bereft of adversarial training, the proposed method
also has a significantly lesser total training time for adap-
tation: 44 sec versus 280 sec in UAN (for the A→D task
of Office-31 dataset and batch size of 32). Thus, the pro-
posed framework offers a much simpler adaptation pipeline,
with a superior computational complexity while achieving
state-of-the-art domain adaptation performance across differ-
ent datasets, even without accessing labeled source data at
the time of adaptation (See Table 2). This corroborates the
superiority of our method in real-time deployment scenarios.

3.3. Varying label-set relationship

In addition to the Tavg reported in Fig. 6 in the paper, we
also compare the target-unknown accuracy Tunk for UAN*
and USFDA. The results are presented in Fig. 1. Clearly, our
method achieves a significant improvement over UAN on
most settings. This demonstrates the capability of USFDA
to detect outlier classes more efficiently, which can be at-
tributed to the ingeniously developed Procurement stage.

3.4. Sensitivity Analysis

In all our experiments (across datasets as in Tables 1-2
of the paper and across varied label-set relationships as in
Fig. 6 of the paper), we fix the hyperparameters as, α = 0.2,
β = 0.1, |Cn| = |Cs|C2 and b+ve/b−ve = 1. As mentioned
in Sec. 4.3 of the paper, one can treat these hyperparameters
as global constants. Nevertheless, in Fig. 2 we demonstrate
the sensitivity of the model to these hyperparameters. Specif-
ically, in Fig. 2A we show the sensitivity of the adaptation
performance, to the choice of |Cn| during the Procurement
stage, across a spectrum of label-set relationships. In Fig. 2B
we show the sensitivity of the model to α and the batch-size
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Figure 1: Comparison of Tunk across varied label-set relationships for the task A→D in Office-31 dataset. A) Visual representation of
label-set relationships and Tunk at the corresponding instances for B) UAN* [7] and C) ours source-free model. Effectively, the direction
along x-axis (blue horizontal arrow) characterizes increasing Open-set complexity. The direction along y-axis (red vertical arrow) shows
increasing complexity of Partial DA scenario. And the pink diagonal arrow denotes the effect of decreasing shared label space.
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Figure 2: A. Sensitivity against |Cn|, represented by |Cn|/|Cs|C2 for varying |Cs| or |Ct| (see fig. legend) by fixing the others (top cyan
box), across varied datasets. B. Sensitivity against α and batch-size ratio (fixed b+ve + b−ve = 64). Note the scale of X and Y-axis.

ratio b+ve/b−ve (ratio of positive vs. negative samples dur-
ing Procurement). Sensitivity to β is shown in Fig. 5B of
the paper. The model exhibits a reasonably low sensitivity
to the hyperparameters, even in the challenging source-free
scenario that allows for a reliable adaptation pipeline.

3.5. Closed-set adaptation

We additionally evaluate our method in the unsuper-
vised source-free closed set adaptation scenario. In Ta-
ble 3 we compare with the closed-set DA methods DAN [2],
ADDA [6], CDAN [3] and the universal domain adaptation
method UAN [7]. Note that, DAN, ADDA and CDAN rely
on the assumption of a shared label space between the source
and the target, and hence are not suited for a universal setting.
Furthermore, all other methods require an explicit retrain-
ing on the source data during adaptation to perform well,
even in the closed-set scenario. This clearly establishes the
superiority of our method in the source-free setting.

3.6. Accuracy on source dataset after Procurement

We observe in our experiments that the accuracy on the
source samples does not drop as a result of the partially gen-
erative framework. For the experiments conducted in Fig.
5C of the paper, we observe similar classification accuracy

on the source validation set, on increasing the number of
negative classes from 0 to 190. This effect can be attributed
to a carefully chosen α = 0.2, which is deliberately biased
towards positive source samples to help maintain the dis-
criminative power of the model even in the presence of class
imbalance (i.e. |Cn| � |Cs|). This enhances the model’s gen-
erative ability without compromising on the discriminative
capacity on the positive source samples.

3.7. Incremental one-shot classification

In universal adaptation, we seek to transfer the knowledge
of "class separability" obtained from the source domain to
the deployed target environment. More concretely, it is
attributed to the segregation of data samples based on an
expected characteristics, such as classification of objects
according to their pose, color, or shape etc. To quantify this,
we consider an extreme case where Cs ∩ Ct = ∅ (A→D in
Office-31 with |Cs| = 15, |Ct| = 16). Considering access to
a single labeled target sample from each target category in
Ct = Ct, which are denoted as xcjt , where j = 1, 2, .., |Ct|,
we perform one-shot Nearest-Neighbour based classification
by obtaining the predicted class label as ĉt = argmincj ||Ft ◦
M(xt)− Ft ◦M(x

cj
t )||2. Then, the classification accuracy

for the entire target set is computed by comparing ĉt with



Table 3: Accuracy(%) on unsupervised closed-set DA (all use ResNet50). Ours is w/o hyperparmeter tuning. Refer Sec. 3.5.

Closed-set DA methods
source- Universal- Office-31 VisDA

free DA D→A A→D A→W W→D W→A D→W Avg. S→ R

DAN (ICML’15) 7 7 63.6 78.6 80.5 99.6 62.8 97.1 80.4 61.1
ADDA (CVPR’17) 7 7 69.5 77.8 86.2 98.4 68.9 96.2 82.8 -

CDAN (NeurIPS’18) 7 7 70.1 89.8 93.1 100 68.0 98.2 86.5 66.8
UAN (CVPR’19) 7 3 68.4 85.3 81.2 99.1 69.7 98.1 83.6 -

Ours USFDA 3 3 70.4 85.4 81.6 98.0 69.4 98.4 83.9 59.8

the corresponding ground-truth category. We obtain 64.72%
accuracy for the proposed framework as compared to 13.43%
for UAN* [7]. A higher accuracy indicates that, the samples
are inherently clustered in the intermediate feature level M ◦
Ft(xt) validating an efficient transfer of “class separability”
in a fully unsupervised manner.

3.8. Feature space visualization

We obtain a t-SNE plot at the intermediate feature level
u for both target and source samples (see Fig. 3), where
the embedding for the target samples is obtained as ut =
Ft ◦M(xt) and the same for the source samples is obtained
as us = Fs◦M(xs). This is because we aim to learn domain-
specific features in contrast to domain-agnostic features as
a result of the restriction imposed by the source-free sce-
nario ("cannot disturb placement of source clusters"). Firstly
we obtain compact clusters for the source-categories as a
result of the partially generative Procurement stage. Sec-
ondly, the target-private clusters are placed away from the
source-shared and source-private as expected as a result of
the carefully formalized SSM weighting scheme in the De-
ployment stage. This plot clearly validates our hypothesis.

4. Miscellaneous

4.1. Specifications of computing resources

For both Procurement and Deployment stages, we make
use of the machine with the specifications as follows. CPU:
Intel core i7-7700K, RAM: 32 GB, GPU: NVIDIA GeForce
GTX 1080Ti (11 GB). The model is trained in Python 2.7
with PyTorch 1.0.0, with CUDA v8.0.61.

4.2. References to code

Our complete documented code (including data loaders,
training pipeline etc.) used for the experiments is available at
https://github.com/val-iisc/usfda. For eval-
uating UAN [7], we execute the official implementation
provided by the authors on github1.

1UAN [7]: https://github.com/thuml/Universal-Domain-Adaptation

Table 4: Architecture of the feature extractor used for UAN [7]
under the "no ResNet-50 finetuning" case (see Table 2 and Sec. 3.1)

Operation Features Non-Linearity
Input 2048

Fully connected 512 ReLU
Fully connected 256 ReLU
Fully connected 512 ReLU
Fully connected 2048 ReLU
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Figure 3: t-SNE plot showing the placement of all the four clusters computed after adaptation for the task A→D in Office-31. It validates
our hypothesis in both the Procurement and the Deployment stages as shown by the highlighted clusters and the corresponding inferences in
the legend under "Category clusters".

Table 5: Network architecture for the Procurement stage. Hyperparameter α = 0.2

Component Trainable? Operation Notation Features Batch Norm? Non-Linearity
Resnet-50

(Upto AvgPool layer) 7 M 2048

Feature Extractor 3 Fs 256
Input 2048 7

Fully connected 1024 7 ELU
Fully connected 1024 3 ELU
Fully connected 256 7 ELU
Fully connected 256 3 ELU

Decoder 3 G 2048
Input 256 7

Fully connected 1024 7 ELU
Fully connected 1024 3 ELU
Fully connected 2048 7 ELU
Fully connected 2048 7 -

Classifier 3 D |Cs|+ |Cn|
Input 256 7

Fully connected Dsrc |Cs| 7

Input 256 7

Fully connected Dneg |Cn| 7



Table 6: Network architecture for the Deployment stage. Hyperparameter β = 0.1

Component Trainable? Operation Notation Features Batch Norm? Non-Linearity
Resnet-50

(Upto AvgPool layer) 7 M 2048

Feature Extractor 3 Ft 256
Input 2048 7

Fully connected 1024 7 ELU
Fully connected 1024 3 ELU
Fully connected 256 7 ELU
Fully connected 256 3 ELU

Classifier 7 D |Cs|+ |Cn|
Input 256 7

Fully connected Dsrc |Cs| 7

Input 256 7

Fully connected Dneg |Cn| 7


