
Normal Assisted Stereo Depth Estimation: Supplementary Material

Uday Kusupati1∗ Shuo Cheng2 Rui Chen3∗ Hao Su2

1The University of Texas at Austin 2University of California San Diego
3Tsinghua University

uday@cs.utexas.edu, scheng@eng.ucsd.edu, chenr17@mails.tsinghua.edu.cn, haosu@eng.ucsd.edu

1. Implementation details
We use 64 levels of depth/disparity while building the

cost volumes. The hyperparameters in the loss function
λz and λn are set to 0.7 and 3 respectively. We train the
network without the consistency module first for 30 epochs
with ADAM optimizer with a learning rate of 2×10−4. Fur-
ther, we finetune the consistency module with the end-to-
end pipeline for 10 epochs with a learning rate of 1× 10−4.
The training process takes 5 days and uses 4 NVIDIA GTX
1080Ti GPUs with a batch size of 12. We use a random crop
size of (320× 240) during training which can be optionally
increased in the later epochs by decreasing the batch size.

2. View Selection and Normal Generation
ScanNet [2] provides depth map and camera pose for

each image frame. To make it appropriate for stereo eval-
uation, view selection is a crucial step. Following Yao et
al. [5], we calculate a score s(i, j) =

∑
p G(θij(p)) for

each image pair according to the sparse points, where
p is a common track in both view i and j, θij(p) =
(180/π) arccos((ci−p)·(cj−p)) is p’s baseline angle and
c is the camera center. G is a piece-wise Gaussian function
[6] that favors a certain baseline angle θ0:
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In the experiments, θ0, σ1 and σ2 are set to 5◦, 1 and 10 re-
spectively. We generate ground-truth surface normal maps
following the procedure of [3].

3. Visualization of NNet slices
We justify the intuition in Section 3.2 in the main pa-

per by visualising the normal estimate contribution from
each slice i.e. NNet(Si) in Figure 1. The slices in the fig-
ure clearly show that only slices with good correspondence
probabilities contribute to the output of NNet.

Figure 1. Normal Estimation contribution from different slices.
The top two rows shows the mask of receptive field and contribu-
tion of normal prediction of two slices Si close to the ground truth
depth. The third row shows the sum of the outputs of NNet on all
other slices.

4. Lt and Comparison with Lc

We first analyse the depth propagation method using nor-
mals proposed in [4] and reduce it to a form where we can
compare it withLc. In [4], given the depth estimate of pixel
i, Zi is accurate, the depth estimate of neighboring pixel j,
Zj is estimated using,

Zj =
nxXj + nyYj + nzZj

(ui − cx)nx/fx + (vi − cy)ny/fy + nz
(1)



where (nx, ny, nz) is the normal map estimate at j. This
equation can be rearranged to
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Eq. 6⇒

∆Z = ∆X

(
∂Z

∂X

)
+ ∆Y

(
∂Z

∂Y

)
(2)

From definition of total derivative,
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In [4], the authors use the assumption that neighboring pix-
els can be assumed to be lying on the same tangent plane,
which is the same as approximating
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)
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)
.

We now compare this formulation of depth-normal con-
sistency with ours. Considering neighboring pixels along
X-direction, ∆Z

∆X = ∂Z
∂X , and similarly, ∆Z

∆Y = ∂Z
∂Y . This

formulation can be put as an objective function minimiza-
tion,
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Our formulation Lc is,
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So fundamentally, while previous depth-normal consis-
tencies generally deal in world coordinate space, we con-
centrate on pixel coordinate space, because the depth map
we estimate is a functionZ(u, v) in u, v. By minimizingLc,
we make the assumption of approximating
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)
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, in contrast to approximating
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. The first formulation Lt enforces depth gradi-

ent consistency in world coordinate space with the assump-
tion that the depth gradients are locally linear in world co-
ordinate space. The second formulation Lc enforces depth
gradient consistency in pixel coordinate space with the as-
sumption that the depth gradients are locally linear in pixel
coordinate space.

Due to the camera projection geometry, the separation
between world coordinates of neighboring pixels in X and
Y directions depends on the absolute depth at the pixels.
The depth gradient linearity assumption in the world coor-
dinate space, assumes the depth gradient to be locally lin-
ear at all depth scales, irrespective of the absolute depth.

Where as, in our formulation Lc, the depth gradient in pixel
coordinate space

(
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∂Z
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)
depends on the absolute depth

of the pixel as shown in equation 7, 8. So, our formulation
takes into account the scale of separation between points
over which the depth gradient is assumed to be linear. Fur-
thermore,
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absolute depth value and hence only provides information
about the relative depths of the pixels, where as
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)
depends on the absolute depth of the pixel locality too.

5. Semantic class specific evaluation on Scan-
Net

We quantify the performance of our methods on planar
and textureless surfaces by evaluating on semantic classes
on ScanNet test images. Specifically we use the eigen13
classes [1] and report the depth estimation metrics of our
methods against DPSNet. We present the other frequently
occuring classes not presented in the paper here in Table 1.
We show that our methods perform well on all semantic cat-
egories and quantitatively show the improvement on planar
and textureless surfaces as well which are usually found on
walls, floors and ceiling.

6. KITTI 2015 Benchmark
We try to evaluate our method on the KITTI 2015 stereo

benchmark. We pre-train our network on the Scene Flow
datasets and finetune it on KITTI 2015 train data. We also
pre-train GANet-NNet (defined in 4.2 in main paper) on
Scene Flow datasets. For GANet, we use the pretrained
models the authors provide. We test the performance of
these pretrained models first on the KITTI train data with-
out training on it and the report the EPE and 3 pixel error
rate in Table 2. We then proceed to train on the KITTI 2015
train data and provide the results of the benchmark in Table
3

We observe that the pretrained models generalize better
than other methods on KITTI 2015. We obtain significant
improvement over DPSNet on the KITTI 2015 test set by
adding normal supervision. The KITTI 2015 dataset con-
tains only 200 training images with sparse ground truths
with the sparsity increasing as we move to the back-
ground. Our ground truth normals are generated using a
least squares optimization on the ground truth depths. Spar-
sity in the ground truth depths makes the generation of very
accurate ground truth normals difficult. We see this as a
significant problem and affects our performance on KITTI
2015. Despite this problem, GANet-NNet performs better
than GANet on the foreground regions.

7. More Qualitative Results
We present more qualitative results on depth map esti-

mation in Figure 2. The examples depict various situations



Label Method Abs
Rel(↓)

Abs
diff(↓)

Sq
Rel(↓)

RMSE
(↓)

Bed DPSNet 0.1291 0.1572 0.050 0.1986
Ours 0.1142 0.1449 0.0405 0.1830
Ours-Lc 0.1049 0.1347 0.0345 0.1665

Books DPSNet 0.1087 0.2281 0.0733 0.2527
Ours 0.0970 0.2176 0.0650 0.2404
Ours-Lc 0.0942 0.2139 0.0628 0.2334

Ceiling DPSNet 0.1693 0.3429 0.1029 0.3895
Ours 0.1496 0.3189 0.0840 0.3528
Ours-Lc 0.1360 0.2244 0.0643 0.2900

Chair DPSNet 0.1602 0.2469 0.0836 0.3187
Ours 0.1417 0.2351 0.0697 0.3050
Ours-Lc 0.1360 0.2244 0.0643 0.2900

Floor DPSNet 0.1116 0.2472 0.0777 0.2973
Ours 0.1092 0.2242 0.0509 0.2642
Ours-Lc 0.1037 0.2061 0.0474 0.2561

Objects DPSNet 0.1305 0.2375 0.0785 0.2934
Ours 0.1165 0.2237 0.0661 0.2771
Ours-Lc 0.1095 0.2113 0.0589 0.2587

Picture DPSNet 0.1160 0.2991 0.0949 0.3249
Ours 0.1110 0.2913 0.0912 0.3167
Ours-Lc 0.1017 0.2724 0.0808 0.2923

Table DPSNet 0.1374 0.2211 0.0745 0.2808
Ours 0.1238 0.2116 0.0646 0.2694
Ours-Lc 0.1164 0.2014 0.0590 0.2545

Wall DPSNet 0.1340 0.2968 0.0871 0.3599
Ours 0.1255 0.2835 0.0799 0.3436
Ours-Lc 0.1173 0.2690 0.0721 0.3215

Window DPSNet 0.1559 0.3836 0.1353 0.4384
Ours 0.1468 0.3605 0.1111 0.4163
Ours-Lc 0.1373 0.3385 0.1079 0.3848

Table 1. Semantic class specific evaluation on ScanNet. “DPSNet”
corresponds to the predictions from DPSNet. “Ours” corresponds
to our predictions before refinement by the consistency module.
“Ours-Lc” refers to our final predictions

Method EPE(↓) 3-pixel error rate(↓)
GANet-deep 1.66 10.5
GANet-NNet 1.64 9.7
Ours 1.64 8.2

Table 2. Evaluation of Scene Flow pretrained models on
KITTI2015. For all the metrics, lower the better.

like planar surfaces, reflective surfaces, planar-textureless
surfaces and in general overall quality of the prediction.
The red boxes on the images illustrate these regions. Our
method produces more accurate depth maps when com-
pared to the previous state-of-the-art.

Method fg-
noc(↓)

both-
noc(↓)

fg-
all(↓)

both-
all(↓)

DPSNet 6.08 4.00 7.58 4.77
GANet-deep 3.11 1.63 3.46 1.81
GANet-NNet 3.04 1.70 3.34 1.91
Ours 4.06 2.08 4.41 2.27

Table 3. Comparative evaluation of our model on KITTI 2015
dataset. For all the metrics, lower the better. fg: Foreground,
both: Foreground and Background, noc: Non occluded Pixels,
all: All Pixels
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Figure 2. Qualitative comparison of the predicted depth maps. GT represents Ground Truth Depth.


