Supplementary

In the following sections, we provide additional details
and results of our sampling approach. Section A presents
additional results of our method. An ablation study is re-
ported in Section B. Section C describes mathematical as-
pects of the soft projection operation, employed by Sam-
pleNet. Finally, experimental settings, including network
architecture and hyperparameter settings, are given in Sec-
tion D.

A. Additional results
A.l. Point cloud retrieval

We employ sampled point sets for point cloud retrieval,
using either farthest point sampling (FPS), S-NET, or Sam-
pleNet. In order to evaluate cross-task usability, the last two
sampling methods are trained with PointNet for classifica-
tion and applied for the retrieval task without retraining [6].
The shape descriptor is the activation vector of the second-
last layer of PointNet when it fed with sampled or complete
clouds. The distance metric is [, between shape descriptors.

Precision and recall are evaluated on the test set of Mod-
elNet40, where each shape is used as a query. The results
when using the complete 1024 point sets and samples of 32
points are presented in Figure 14. SampleNet improves the
precision over all the recall range with respect to S-NET
and approaches the performance with complete input sets.
It shows that the points sampled by SampleNet are suitable
not only for point cloud classification but also for retrieval.
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Figure 14. Precision-recall curve with sampled points. PointNet
is fed with sampled point clouds from the test set. Its penultimate
layer is used as the shape descriptor. Utilizing SampleNet results
in improved retrieval performance in comparison to the other sam-
pling methods. Using only 32 points, SampleNet is close to the
precision obtained with complete input points cloud, with a drop
of only 4% in the area under the curve (AUC).

A.2. Progressive sampling

Our method is applied to the progressive sampling of
point clouds [6] for the classification task. In this case, the

vanilla version of PointNet [28] is employed as the classi-
fier [6]. Performance gains are achieved in the progressive
sampling settings, as shown in Figure 15. They are smaller
than those of SampleNet trained per sample size separately
(see Figure 5 in the main body) since for progressive sam-
pling, SampleNet-Progressive should be optimal for all the
control sizes concurrently.

We also perform reconstruction from progressively sam-
pled point clouds. Our normalized reconstruction error is
compared to that of FPS and ProgressiveNet [6] in Fig-
ure 16. Figure 21 shows a visual reconstruction example.
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Figure 15. Classification results with SampleNet-Progressive.
PointNet vanilla is used as the task network and was pre-trained
on point clouds with 1024 points. The instance classification ac-
curacy is evaluated on sampled point clouds from the test split.
Our sampling network outperforms farthest point sampling (FPS)
and ProgressiveNet [6].
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Figure 16. Normalized reconstruction error with SampleNet-

Progressive. Point clouds are reconstructed from nested sets of

sampled points. We normalize the reconstruction error from a

sample by the error resulting from a complete input. As the sam-

pling ratio is increased, the improvement of SampleNet, compared

to the alternatives, becomes more dominant.

A.3. Computation load and memory space

The computation load of processing a point cloud
through a network is regarded as the number of multiply-
accumulate operations (MACs) for inference. The required



memory space is the number of learnable parameters of the
network.

For a PointNet like architecture, the number of MACs
is mainly determined by the number of input points pro-
cessed by the multi-layer perceptrons (MLPs). Thus, reduc-
ing the number of points reduces the computational load.
The memory space of SampleNet depends on the number of
output points, resulting from the last fully connected layer.
The soft projection operation adds only one learnable pa-
rameter, which is negligible to the number of weights of
SampleNet.

We evaluate the computation load and memory space
for the classification application. We denote the compu-
tation and memory of SampleNet that outputs m points as
Csn,, and Mgy, , respectively. Similarly, the computation
of PointNet that operates on m points is denoted as Cpy,,,,
and for a complete point cloud as Cpy. The memory of
PointNet is marked Mpp. It is independent of the number
of processed points. When concatenating SampleNet with
PointNet, we define the computation reduction percent C'R
as:

C C
03100.(151\’m+”\’m>’ (13)
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and the memory increase percent M [ as:
M M
MIZlOO-M. (14)
Mpn

Figure 17 presents the memory increase versus computa-
tion reduction. As the number of sampled points is reduced,
the memory increase is lower, and the computation reduc-
tion is higher, with a mild decrease in the classification ac-
curacy.

For example, SampleNet for 32 points has 0.22M pa-
rameters and performs 34M MACs ("M’ stands for Mil-
lion). PointNet that operates on point clouds of 32 in-
stead of 1024 points requires only 14M instead of 440M
MACs. The number of PointNet parameters is 3.5M. Sam-
pleNet followed by PointNet sums up to 48M MACs and
3.72M parameters. These settings require about 6% addi-
tional memory space and reduce the computational load by
almost 90%.

A.4. Sampling consistency for registration task

Given a sampled set 79" of template points, rotated by
the ground truth rotation R, and a sampled set S, of
source points, the sampling consistency is defined as the
Chamfer distance between these two sets:
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Figure 17. Memory, computation, and performance. The mem-
ory increase for chaining SampleNet with PointNet is plotted
against the computation reduction, which results from processing
sampled instead of complete clouds. The points on the graph from
left to right correspond to sampling ratios {2, 4, 8,16, 32}. ACC
is the classification accuracy on the test split of ModelNet40 when
PointNet runs on sampled point sets. With a slight increase in
memory and small accuracy drop, SampleNet reduces the compu-
tational load substantially.

For a given sampler, this metric quantifies the tendency
of the algorithm to sample similar points from the source
and template point clouds. We measure the average con-
sistency on the test set of the Car category from Model-
Net40. Results for random sampling, FPS and SampleNet
are reported in Table 2. The table shows that SampleNet
sampling is substantially more consistent than that of the
alternatives. This behavior can explain its success for the
registration task.

A.S5. Registration for different shape categories

Registration is applied to different shape categories from
ModelNet40. We present the results for Table, Sofa, and
Toilet categories in Table 3, and visualizations in Figure 18.
Additional shape classes that we evaluated include Chair,
Laptop, Airplane and Guitar. SampleNet achieves the best
results compared to FPS and random sampling for all these
categories.

B. Ablation study
B.1. Neighborhood size

The neighborhood size k = |[Np(q)| is the number of
neighbors in P of a point q € @, on which q is softly pro-
jected. This parameter controls the local context in which q
searches for an optimal point to sample.

We assess the influence of this parameter by training sev-
eral progressive samplers for classification with varying val-
ues of k. Figure 19 presents the classification accuracy dif-
ference between SampleNet-Progressive trained with £ = 7
and with k € {2,4,12,16}. The case of k = 7 serves as a
baseline, and its accuracy difference is set to 0. As shown



Sampling ratio 2 4 8 16 32 64 128
Random sampling | 1.03 259 5.29 999 1853 3471 63.09
FPS 046 15 33 642 1178 2223 4349
SampleNet 053 1.64 314 483 6.85 7.2 9.6

Table 2. Sampling consistency between rotated point clouds. The consistency is measured for the test split of Car category from
ModelNet40. The results are multiplied by a factor of 10%. Lower is better. When the sampling ratio is small and many points are taken,
SampleNet performs on par with the other methods. However, as it increases, SampleNet selects much more similar points than random

sampling and FPS.
Category Table Sofa Toilet
Sampling ratio 8 16 32 \ 8 16 32 \ 8 16 32
Random sampling | 13.09 18.99 29.76 | 16.58 24.57 34.19 | 12.17 20.51 35.92
FPS 774 879 11.15 | 941 1213 1752 | 774 849 11.69
SampleNet 644 724 835 | 856 108 1097 | 6.05 7.09 8.07

Table 3. Mean rotation error (MRE) with SampleNet for different shape categories. MRE is reported in degrees. Lower is better.
PCRNet is trained on complete point clouds of 1024 points from the Table, Sofa and Toilet categories of ModelNet40. The MRE is
measured on the test split for different sampling methods. Utilizing SampleNet yields better results. With complete input, PCRNet

achieves 6.08° MRE for Table, 7.15° MRE for Sofa, and 5.43° MRE for Toilet.
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Figure 18. Registration with sampled points for different shape
categories. Left column: unregistered source with 1024 points in
Blue overlaid on the mesh model. Middle column: FPS registered
results. Right column: SampleNet registered results. Sampled sets
of 32 points from the template and source are illustrated in Orange
and Magenta, respectively. Registration with SampleNet points
yields better results than FPS.

in the figure, training with smaller or larger neighborhood
sizes than the baseline decreases the accuracy. We conclude
that £k = 7 is a sweet spot in terms of local exploration re-
gion size for our learned sampling scheme.
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Figure 19. The influence of different neighborhood sizes.
SampleNet-Progressive is trained for classification with different
sizes k for the projection neighborhood and evaluated on the test
split of ModelNet40. We measure the accuracy difference for each
sampling ratio with respect to the baseline of £ = 7. Larger or
smaller values of k result in negative accuracy difference, which

indicates lower accuracy.

B.2. Additional loss terms

As noted in the paper in section 4.1, the average soft pro-
jection weights, evaluated on the test set of ModelNet40,
are different than a delta function (see Figure 7). In this
experiment, we examine two loss terms, cross-entropy and
entropy loss, that encourage the weight distribution to con-
verge to a delta function.

For a point g € (), we compute the cross-entropy be-
tween a Kronecker delta function, representing the nearest



neighbor of q in P, and the projection weights of g, namely,
{w;}, i € Np(q). The cross-entropy term takes the form:

Hp(q)=— Y lp(i)log(w;) = —log(w;), (16)
i€Np(q)

where 1;+(7) is an indicator function that equals 1 if ¢ =
i* and 0 otherwise; i* € Np(q) is the index of nearest
neighbor of q in P. The cross-entropy loss is the average
over all the points in Q:

L(Q, ‘Q| > Hi(q (17

qQeQ

Similarly, the entropy of the projection weights for a point
q € @ is given by:

Hp(q)=— > wilog(w), (18)

i€ENp(a)

and the entropy loss is defined as:

Ly(Q, |Q| > Hp(q (19)

qQeQ

The cross-entropy and entropy losses are minimized
when one of the weights is close to 1, and the others to
0. We add either of these loss terms, multiplied by a factor
7, to the training objection of SampleNet (Equation 1), and
train it for the classification task.

Figure 20 presents the weight evolution for SampleNet
that samples 64 points. It was trained with the additional
cross-entropy loss, with n = 0.1. In these settings, the
weights do converge quite quickly to approximately delta
function, with an average weight of 0.94 for the first nearest
neighbor at the last epoch. However, as Table 4 shows, this
behavior does not improve the task performance, but rather
the opposite.

The cross-entropy loss compromises the quest of Sam-
pleNet for optimal points for the task. Instead of explor-
ing their local neighborhood, the softly projected points are
locked on their nearest neighbor in the input point cloud
early in the training process. We observed similar behav-
ior when using the entropy loss instead of the cross-entropy
loss. We conclude that the exact convergence to the near-
est neighbor is not required. Instead, the projection loss
(Equation 10) is sufficient for SampleNet to achieve its goal
- learning to sample an optimal point set for the task at hand.

C. Mathematical aspects of soft projection
C.1. Idempotence

Idempotence is a property of an operation whereby it can
be applied several times without changing the obtained ini-
tial result. A mathematical projection is an idempotent op-
eration. In the limit of ¢ — 0, the soft projection becomes
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Figure 20. Weight evolution with cross-entropy loss. SampleNet
is trained to sample 64 points for classification. A cross-entropy
loss on the projection weights is added to its objective function.
The weights are averaged on sampled point clouds from the test
set of ModelNet40 after the first and every 100 training epochs.
In these settings, most of the weight is given to the first nearest
neighbor quite early in the training process.

an idempotent operation. That is:

lim > wi(t)p; = argmin[|q — p|l> = 1", (20)
i€Np(q) pi}

which results in the definition of sampling in Equation 12.

The proof of idempotence for the sampling operation is

straightforward:

argmin ||r* — p;|]a = r*. 21
{pi}

C.2. Projection under the Bregman divergence

The distance we choose to minimize between a query
point q € ) and the initial point cloud P is the Squared
Euclidean Distance (SED). However, SED is not a metric;
it does not satisfy the triangle inequality. Nevertheless, it
can be viewed as a Bregman divergence [4], a measure of
distance defined in terms of a convex generator function F.

Let F' : X — R be a continuously-differentiable and
convex function, defined on a closed convex set X. The
Bregman divergence is defined to be:

Dr(p,a) = F(p) — F(q) — (VF(q),p—a). (22)

Choosing F(x) : R*
gence takes the form:

Dr(p,q) = |lp — q|*. (23)

The projection under the Bregman divergence is defined
as follows. Let ( C R* be a closed, convex set. Assume

2, the Bregman diver-




Sampling ratio 2 4 8 16 32 64 128

882 834 797 790 744 555 28.7
884 859 838 822 80.1 540 232

SampleNet trained with cross entropy loss
SampleNet trained without cross entropy loss

Table 4. Ablation test for cross-entropy loss. SampleNet is trained for classification, either with or without cross-entropy loss (Equa-
tion 17). For each case, we report the classification accuracy on the test split of ModelNet40. Employing cross-entropy loss during training

results in inferior performance for most of the sampling ratios.

that F' : ¢ — Ris a strictly convex function. The projection
of q onto ¢ under the Bregman divergence is:

I (q) £ argggin Dp(r,q). (24)

In our settings, the softly projected points are a subset of
the convex hull of {p;}, i € Np(q). The convex hull is a
closed and convex set denoted by (q:

0.1, Y w=1

i€ENp(q)

(q={r:r= Z w;Pi, W; €
i€ENP(q)
(25)

In general, not all the points in (q can be obtained, be-
cause of the restriction imposed by the definition of {w;} in
Equation 9. However, as we approach the limit of ¢t — 0,
the set (4 collapses to {p;}. Thus, we obtain the sampling
operation:

5 (o (@) £ argmin Dp(pi,q) =%, (26)
Pi

as defined in Equation 12.

D. Experimental settings
D.1. Task networks

We adopt the published architecture of the task networks,
namely, PointNet for classification [28], PCRNet for regis-
tration [32], and point cloud autoencoder (PCAE) for re-
construction [1]. PointNet and PCAE are trained with the
settings reported by the authors. Sarode et al. [32] trained
PCRNet with Chamfer loss between the template and reg-
istered point cloud. We also added a loss term between
the estimated transformation and the ground truth one. We
found out that this additional loss term improved the results
of PCRNet, and in turn, the registration performance with
sampled point clouds of SampleNet. Section D.4 describes
both loss terms.

D.2. SampleNet architecture

SampleNet includes per-point convolution layers, fol-
lowed by symmetric global pooling operation and several
fully connected layers. Its architecture for different appli-
cations is detailed in Table 5. For SampleNet-Progressive,

Task SampleNet architecture
MLP(64,64,64,128,128)

Classification max pooling
F(C(256,256,256,m x 3)
MLP(64,64,64,128,128)

Registration max pooling
F(C(256,256,256,m x 3)

MLP(64,128,128, 256, 128)

Reconstruction max pooling

FC(256,256,m x 3)

Table 5. SampleNet architecture for different tasks. M LP
stands for multi-layer perceptrons. F'C' stands for fully connected
layers. The values in M LP(-) are the number of filters of the per-
point convolution layers. The values in F'C(-) are the number of
neurons of the fully connected layers. The parameter m in the last
fully connected layer is the sample size.

the architecture is the same as the one in the table, with
m = 1024 for classification and m = 2048 for reconstruc-
tion.

Each convolution layer includes batch normalization and
ReLU non-linearity. For classification and registration, each
fully connected layer, except the last one, includes batch
normalization and ReLU operations. ReLU is also applied
to the first two fully connected layers for the reconstruction
task, without batch normalization.

D.3. SampleNet optimization

Table 6 presents the hyperparameters for the optimiza-
tion of SampleNet. In progressive sampling for the classi-
fication task, we set v = 0.5 and § = 1/30. The other
parameter values are the same as those appear in the table.
We use Adam optimizer with a momentum of 0.9. For clas-
sification, the learning rate decays by a factor of 0.7 every
60 epochs. SampleNet-Progressive is trained with control
sizes Cs = {2'}12, for classification and Cs = {2'}]2, for
reconstruction.

The temperature coefficient (¢ in Equation 9) is initial-
ized to 1 and learned during training. In order to avoid nu-
merical instability, it is clipped by a minimum value of 0.1
for registration and 0.01 for reconstruction.

We train our sampling method with a Titan Xp GPU.
Training SampleNet for classification takes between 1.5 to
7 hours, depending on the sample size. The training time



Classification Registration = Reconstruction

k 7 8 16
o) 30 0.01 0.01
Ié; 1 1 1

~y 1 1 0

) 0 0 1/64
A 1 0.01 0.0001
BS 32 32 50
LR 0.01 0.001 0.0005
TEs 500 400 400

Table 6. Hyperparameters. The table details the values that we
use for the training of our sampling method for different applica-
tions. BS, LR, and TEs stand for batch size, learning rate, and
training epochs, respectively.

of progressive sampling for this task is about 11 hours. The
training time of SampleNet for registration takes between 1
to 2.5 hours. For the sample sizes of the reconstruction task,
SampleNet requires between 4 to 30 hours of training, and
SampleNet-Progressive requires about 2.5 days.

D.4. Losses and evaluation metric for registration

Since the code of PCRNet [32] was unavailable at the
time of submission, we trained PCRNet with slightly dif-
ferent settings than those described in the paper, by using a
mixture of supervised and unsupervised losses.

The unsupervised loss is the Chamfer distance [1]:

Lea(S,T) |S‘ meHs t/)2

+m Zfsnelg 1t — s[5,
teT

27

for a source point cloud S and a template point cloud 7.
For the supervised loss, we take the quaternion output of
PCRNet and convert it to a rotation matrix to obtain the
predicted rotation R,..q. For a ground truth rotation R,
the supervised loss is defined as follows:

er (Rpred7 ) | | pr ed I| ‘Fa (28)

where I is a 3 x 3 identity matrix, and || - || is the Frobe-
nius norm. In total, the task loss for registration is given by
Ccd(sa T) + Erm(Rpreda Rgt)~

The rotation error RFE is calculated as follows [53]:

RE = 200571(2<Qpred7 Qgt>2 - 1), 29)

where ¢,,.q and g4, are quaternions, representing the pre-
dicted and ground truth rotations, respectively. We convert
the obtained value from radians to degrees, average over the
test set, and report the mean rotation error.
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Figure 21. Reconstructions with SampleNet-Progressive. Odd rows: input point cloud and samples of different progressive sampling
methods. The number of sampled points is denoted next to the method’s name. Even rows: reconstruction from the input and the
corresponding sample. Our SampleNet-Progressive selects most of its points at the outline of the shape, while ProgressiveNet [6] selects
interior points and FPS points are spread uniformly. In contrast to the other methods, our result starts to resemble the reconstruction from
the complete input when using only 32 points, which is about 1.5% of the input data.



