
Supplementary Material - Going Deeper with Lean Point Networks

Eric-Tuan Le1 Iasonas Kokkinos1,2 Niloy J. Mitra1,3

1University College London 2Ariel AI 3Adobe Research

1. Details on evaluation results
1.1. Datasets

We evaluate our networks on the point cloud segmenta-
tion task on three different datasets, ordered by increasing
complexity:

• ShapeNet-Part [1]: CAD models of 16 different object
categories composed of 50 labeled parts. The dataset
provides 13, 998 samples for training and 2, 874 sam-
ples for evaluation. Point segmentation performance is
assessed using the mean point Intersection over Union
(mIoU).

• ScanNet [2]: Scans of real 3D scenes (scanned and
reconstructed indoor scenes) composed of 21 semantic
parts. The dataset provides 1, 201 samples for training
and 312 samples for evaluation. We follow the same
protocol as in [5] and report both the voxel accuracy
and the part Intersection over Union (pIoU).

• PartNet [4]: Large collection of CAD models of 17
object categories composed of 251 labeled parts. The
dataset provides 17, 119 samples for training, 2, 492
for validation and 4, 895 for evaluation. The dataset
provides a benchmark for three different tasks: fine-
grained semantic segmentation, hierarchical semantic
segmentation and instance segmentation. We report on
the first task to evaluate our networks on a more chal-
lenging segmentation task using the same part Inter-
section over Union (pIoU) as in ScanNet.

1.2. Evaluation metrics

To report our segmentation results, we use two versions
of the Intersection over Union metric:

• mIoU: To get the per sample mean-IoU, the IoU is
first computed for each part belonging to the given ob-
ject category, whether or not the part is in the sample.
Then, those values are averaged across the parts. If
a part is neither predicted nor in the ground truth, the
IoU of the part is set to 1 to avoid this indefinite form.

The mIoU obtained for each sample is then averaged
to get the final score as,

mIoU =
1

nsamples

∑
s∈samples

1

ncat(s)
parts

∑
pi∈Pcat(s)

IoUs(p
i)

with nsamples the number of samples in the dataset,
cat(s), ncat(s)

parts and Pcat(s) the object category where s be-
longs, the number of parts in this category and the sets
of its parts respectively. IoUs(p

i) is the IoU of part pi

in sample s.

• pIoU: The part-IoU is computed differently. The IoU
per part is first computed over the whole dataset and
then, the values obtained are averaged across the parts
as,

pIoU =
1

nparts

∑
p∈parts

∑
s∈samples Is(pi)∑
s∈samples Us(pi)

with nparts the number of parts in the dataset, Is(pi) and
Us(p

i) the intersection and union for samples s on part
pi respectively.

To take into account the randomness of point cloud sam-
pling when performing coarsening, we use the average of
‘N’ forward passes to decide on the final segmentation dur-
ing evaluation when relevant.

Table 1. Summary of the impact of our module implants in five
different networks on ShapeNet-Part. The impact is measured by
four metrics: (i) memory footprint, (ii) IoU, (iii) inference time
and (iv) backward time. With all tested architectures, our lean
modules decrease the memory footprint while allowing small im-
provements in terms of IoU. The impact on inference time depends
on the choice of the network but can range from positive impact to
a small slowdown.

Memory IoU Inference Backward
PN++ -76% +1.2% -46% -83%

DGCNN -69% +0.9% -22% -49%
SCNN -28% +2.2% +27% +193%

PointCNN -56% +1.0% +35% +71%



Table 2. Per-category performance mIoU on ShapeNet-Part (Top) and pIoU on PartNet (Bottom) based on a training on each whole dataset
all at once. On ShapeNet-Part, all of our network architectures outperform PointNet++ baseline by at least +1.0%. Our deep architecture
still improves the performance of its shallower counterpart by a small margin of +0.1%. On PartNet, the fine details of the segmentation
and the high number of points to process make the training much more complex than previous datasets. PointNet++, here, fails to capture
enough features to segment the objects properly. Our different architectures outperform PointNet++ with a spread of at least +2.0% (+5.7%
increase). With this more complex dataset, deeper networks become significantly better: our Deep LPN network achieves to increase pIoU
by +9.7% over PointNet++ baseline, outperforming its shallow counterpart by +2.1%.

Tot./Av. Aero Bag Cap Car Chair Ear Guitar Knife Lamp Laptop Motor Mug Pistol Rocket Skate Table
No. Samples 13998 2349 62 44 740 3053 55 628 312 1261 367 151 146 234 54 121 4421

PN++ 84.60 82.7 76.8 84.4 78.7 90.5 72.3 90.5 86.3 82.9 96.0 72.4 94.3 80.5 62.8 76.3 81.2
mRes 85.47 83.7 77.1 85.4 79.6 91.2 73.4 91.6 88.1 84.1 95.6 75.1 95.1 81.4 59.7 76.9 82.1

mResX 85.42 83.1 77.0 84.8 79.7 91.0 67.8 91.5 88.0 84.1 95.7 74.6 95.4 82.4 57.1 77.0 82.3
LPN 85.65 83.3 77.2 87.8 80.6 91.1 72.0 91.8 88.1 84.6 95.8 75.8 95.1 83.6 60.7 75.0 82.4

Deep LPN 85.66 82.8 79.2 82.7 80.9 91.1 75.4 91.6 88.1 84.9 95.3 73.1 95.1 83.3 61.6 77.7 82.6

Tot./Av. Bed Bott Chair Clock Dish Disp Door Ear Fauc Knife Lamp Micro Frid Storage Table Trash Vase
No. samples 17119 133 315 4489 406 111 633 149 147 435 221 1554 133 136 1588 5707 221 741

PN++ 35.2 30.1 32.0 39.5 30.3 29.1 81.4 31.4 35.4 46.6 37.1 25.1 31.5 32.6 40.5 34.9 33.0 56.3
mRes 37.2 29.6 32.7 40.0 34.3 29.9 80.2 35.0 50.0 56.5 41.0 26.5 33.9 35.1 41.0 35.4 35.3 57.7

mResX 37.5 32.0 37.9 40.4 30.2 31.8 80.9 34.0 43.0 54.3 42.6 26.8 33.1 31.8 41.2 36.5 40.8 57.2
LPN 37.8 33.2 40.7 40.8 35.8 31.9 81.2 33.6 48.4 54.3 41.8 26.8 31.0 32.2 40.6 35.4 41.1 57.2

Deep LPN 38.6 29.5 42.1 41.8 34.7 33.2 81.6 34.8 49.6 53.0 44.8 28.4 33.5 32.3 41.1 36.3 43.1 57.8

1.3. Summary of the impact of our module

We experiment on four different networks that all exhibit
diverse approach to point operation: (i) PointNet++ [6],
(ii) Dynamic Graph CNN [7], (iii) SpiderCNN [8], (iv)
PointCNN [3] . As detailed in Table 1, our lean blocks, be-
ing modular and generic, can not only increase the memory
efficiency of that wide range of networks but can as well im-
prove their accuracy. The effect of our blocks on inference
time does vary with the type of network, from a positive
impact to a small slowdown.

1.4. Detailed results from the paper

The following section provides more details on the eval-
uation experiments introduced in the paper. We present the
per-class IoU on both ShapeNet-Part and PartNet datasets
in Table 2 for each of the PointNet++ based architecture.
Due to the high number of points per sample and the level
of details of the segmentation, PartNet can be seen as much
more complex than ShapeNet-Part.

On PartNet, the spread between an architecture with an
improved information flow and a vanilla one becomes sig-
nificant. Our PointNet++ based networks perform consis-
tently better than the original architecture on each of the
PartNet classes. Increasing the depth of the network allows
to achieve a higher accuracy on the most complex classes
such as Chairs or Lamps composed of 38 and 40 different
part categories respectively. Our deep architecture is also
able to better capture the boundaries between parts and thus
to predict the right labels very close from part edges. When
a sample is itself composed of many parts, having a deep

Table 3. Per-class IoU on PartNet when training a separate network
for each category, evaluated for three different architectures for
Chairs and Tables (60% of the whole dataset). Our lean networks
achieve here similar performance as their vanilla counterpart while
delivering significant savings in memory.

Chair Table

DGCNN
Vanilla 29.2 (+0.0%) 22.5 (+0.0%)

Lean 24.2 (-17.1%) 28.9 (+28.4%)

SCNN
Vanilla 30.8 (+0.0%) 21.3 (+0.0%)

Lean 31.1 (+1.0%) 21.2 (-0.5%)

PointCNN
Vanilla 40.4 (+0.0%) 32.1 (+0.0%)

Lean 41.4 (+2.5%) 33.1 (+3.1%)

Table 4. Memory and speed efficiency of our deep network Deep
LPN with respect to two different implementations of DeepGCNs.
Our network wins on all counts and successfully reduces the mem-
ory (- 75%) and increases the speed (- 48% and - 89% for the in-
ference and the backward time respectively).

Memory (Gb) Inference Time (ms) Backward Time (ms)
DeepGCN (Dense) 8.56 664 1088
DeepGCN (Sparse) 10.00 1520 445

Deep LPN 2.18 (-75%) 345 (-48%) 67 (-85%)

architecture is a significant advantage.
As additional reference, we provide on Table 3 the per-

formance of our lean blocks applied to three architectures
when training one network per-object category on PartNet,
trained on Chairs and Tables as they represent 60% of the
dataset.

For reference, we provide as well the absolute values for
the efficiency of the previous networks measured by three
different metrics on Table 4 and Table 5: (i) memory foot-



Table 5. Efficiency of our network architectures measured with a batch size of 8 samples or less on a Nvidia GTX 2080Ti GPU. All of
our lean architectures allow to save a substantial amount of memory on GPU wrt. the PointNet++ baseline from 58% with mRes to a 67%
decrease with LPN. This latter convolution-type architecture wins on all counts, decreasing both inference time (-41%) and the length of
backward pass (-68%) by a large spread. Starting form this architecture, the marginal cost of going deep is extremely low: doubling the
number of layers in the encoding part of the network increases inference time by 6.3% on average and the memory consumption by only
3.6% at most compared to LPN). When used in conjunction with other base architectures, similar memory savings are achieved by our
blocks with low impact on inference time.

Efficiency (%) Memory Footprint (Gb) Inference Time (ms) Length Backward pass (ms)
ShapeNet-Part ScanNet PartNet ShapeNet-Part ScanNet PartNet ShapeNet-Part ScanNet PartNet ShapeNet-Part ScanNet PartNet

PointNet++ 84.60 80.5 35.2 6.80 6.73 7.69 344 238 666 173 26 185
mRes 85.47 79.4 37.2 2.09 2.93 4.03 395 379 537 54 12 68

mResX 85.42 79.5 37.5 2.38 3.15 4.13 441 383 583 122 26 138
LPN 85.65 83.2 37.8 1.65 2.25 3.24 187 166 347 30 15 39

Deep LPN 85.66 82.2 38.6 1.42 2.33 3.31 205 177 356 37 23 51

Efficiency (%) Memory Footprint (Gb) Inference Time (ms) Length Backward pass (ms)
ShapeNet-Part ScanNet PartNet ShapeNet-Part ScanNet PartNet ShapeNet-Part ScanNet PartNet ShapeNet-Part ScanNet PartNet

DGCNN Vanilla 82.59 74.5 20.5 2.62 7.03 9.50 41 194 216 41 82 104
Lean 83.32 75.0 21.9 0.81 3.99 5.77 32 158 168 21 45 57

SCNN Vanilla 79.86 72.9 17.9 1.09 4.33 5.21 22 279 142 45 99 249
Lean 81.61 73.2 18.4 0.79 3.25 3.33 28 281 150 132 443 637

PointCNN Vanilla 83.60 77.2 25.0 4.54 5.18 6.83 189 229 228 109 71 77
Lean 84.45 80.1 27.0 1.98 3.93 5.55 256 278 263 186 225 208

print, (ii) inference time and (iii) length of backward pass.
Our lean architectures consistently reduce the memory con-
sumption of their vanilla couterparts while having a very
low impact on inference time. When compared to Deep-
GCNs, our Deep LPN architecture wins on all counts by
achieving the same performance while requiring less mem-
ory (-75%) and shorter inference (-48%) and backward (-
89%) time.

2. Design of our architectures
In this section, we provide more details about how we

design our lean architectures to ensure reproducible re-
sults for the following architectures, (i) PointNet++ [6],
(ii) Dynamic Graph CNN [7], (iii) SpiderCNN [8], (iv)
PointCNN [3] . We implement each networks in Pytorch
following the original code in Tensorflow and we implant
our blocks directly within those networks.

2.1. PointNet++ based architectures

To keep things simple and concise in this section, we
adopt the following notations:

• S(n): Sampling layer of n points;

• rNN(r): query-ball of radius r;

• MaxP: Max Pooling along the neighborhood axis;

•
⊕

: Multi-resolution combination;

• Lin(s): Linear unit of s neurons;

• Drop(p): Dropout layer with a probability p to zero a
neuron.

Inside our architectures, every downsampling module is it-
self based on FPS to decrease the resolution of the input
point cloud. To get back to the original resolution, upsam-
pling layers proceed to linear interpolation (Interp) in the
spatial space using the Ku = 3 closest neighbors. To gen-
erate multiple resolutions of the same input point cloud, a
downsampling ratio of 2 is used for every additional resolu-
tion.

2.1.1 PointNet++

In all our experiments, we choose to report the performance
of the multi-scale PointNet++ (MSG PN++) as it is reported
to beat its alternative versions in the original paper on all
tasks. We code our own implementation of PointNet++ in
Pytorch and choose the same parameters as in the original
code.

For segmentation task, the architecture is designed as
follow:
Encoding1:

S(512)→

 rNN(.1)→ mLP([32, 32, 64])→ MaxP
rNN(.2)→ mLP([64, 64, 128])→ MaxP
rNN(.4)→ mLP([64, 96, 128])→ MaxP

⊕
Encoding2:

S(128)→

 rNN(.2)→ mLP([64, 64, 128])→ MaxP
rNN(.4)→ mLP([128, 128, 256])→ MaxP
rNN(.8)→ mLP([128, 128, 256])→ MaxP

⊕
Encoding3:
S(1)→ mLP([256, 512, 1024])→MaxP
Decoding1: Interp(3)→ mLP([256, 256])
Decoding2: Interp(3)→ mLP([256, 128])



SLP

shared MLP

max
pool

+

+

+

XL
XL

XL
XL

pooling

k-neighbors

PN

pointNet

SLP

single layer
perceptron

kNN

neighborhood
lookup

pool

pooling

xLink

cross link

D

downsample

U

upsampleBuilding Blocks

Figure 1. Elementary building blocks for point processing. Apart from standard neighborhood lookup, pooling and SLP layers, we
introduce cross-link layers across scales, and propose multi-resolution up/down sampling blocks for point processing. PointNet module
combines a stack of shared SLP (forming an MLP) to lift individual points and then performs permutation-invariant local pooling.

Decoding3: Interp(3)→ mLP([128, 128])
Classification: Lin(512)→ Drop(.7)→ Lin(nbclasses)
We omit here skiplinks for sake of clarity: they connect
encoding and decoding modules at the same scale level.

2.1.2 mRes

The mRes architecture consists in changing the way the
sampling is done in the network to get a multi-resolution
approach (see Fig. 2). We provide the details only for the
encoding part of the network as we keep the decoding part
unchanged from PointNet++.
Encoding1: S(512)→ rNN(.1)→ mLP([32, 32, 64])→ MaxP
S(256)→ rNN(.2)→ mLP([64, 64, 128])→ MaxP
S(128)→ rNN(.4)→ mLP([64, 96, 128])→ MaxP

⊕
Encoding2: S(128)→ rNN(.2)→ mLP([64, 64, 128])→ MaxP
S(96)→ rNN(.4)→ mLP([128, 128, 256])→ MaxP
S(64)→ rNN(.8)→ mLP([128, 128, 256]→ MaxP

⊕
Encoding3:
S(1)→ mLP([256, 512, 1024])→MaxP

Starting from this architecture, we add Xlink connec-
tions between each layer of each mLP to get our mResX
architecture. A Xlink connection connects two neighbor-
ing resolutions to merge information at different granular-
ity. On each link, we use a sampling module (either down-
sampling or upsampling) to match the input to the target
resolution. We use two alternatives for feature combina-
tion: (i) concatenation, (ii) summation. In the later case, we
add an additional sLP on each Xlink to map the input fea-
ture dimension to the target. To keep this process as lean as
possible, we position the SLP at the coarser resolution, i.e.
before the upsampling module or after the downsampling
module.

Figure 2. Comparison of multi-scale processing (top) with multi-
resolution processing (down): multi-resolution processing allows
us to process larger-scale areas while not increasing memory con-
sumption, making it easier to elicit global context information.

2.1.3 LPN

Our convPN module can be seen as a point counterpart of
2D image convolution. To do so, the convPN module re-
places the MLP with its pooling layer by a sequence of SLP-
Pooling modules.

To simplify the writing, we adopt the additional nota-
tions:

• Sampling block S([s1, s2, .., sn]T ) where we make a
sampling of si points on each resolution i. When
only one resolution is available as input, the block
S([., s1, s2, ..., sn−1]

T ) will sequentially downsample
the input point cloud by s1, s2, .. points to create the
desired number of resolutions.

• Convolution block C([r1, r2, ..., rn]T ) is composed it-
self of three operations for each resolution i: neighbor-



hood lookup to select the riNN for each points, an sLP
layer of the same size as its input and a max-pooling.

• Transition block T ([t1, t2, ..., tn]T ) whose main role is
to change the channel dimension of the input to the one
of the convolution block. An sLP of ouput dimension
ti will be apply to the resolution i.

Residual connections are noted as *.
Encoding1:

S

 .
512
256

 → T

3264
64

 → C∗

.1.2
.4

 → T

3264
96

 →

C∗

.1.2
.4

→ T

 64
128
128

→ C∗

.1.2
.4

→ S

512256
128

→⊕
Encoding2:

S

 .
128
96

 → T

 64
128
128

 → C∗

.2.4
.8

 → C∗

.2.4
.8

 →

T

128256
256

→ C∗

.2.4
.8

→ S

12896
64

→⊕
Encoding3:
S(1)→ mLP([256, 512, 1024])→MaxP

Note here that there is no Transition block between the
first two C blocks in the Encoding2 part. This is because
those two Convolution blocks work on the same feature di-
mension.

We also add Xlinks inside each of the C blocks. In this
architecture, the features passing through the Xlinks are
combined by summation and follow the same design as for
mResX.

In the case of SLPs, using the on-the-fly re-computation
of the neighborhood features tensor has a significant pos-
itive impact on both the forward and backward pass by
means of a simple adjustment. Instead of applying the
SLP on the neighborhood features tensor, we can first ap-
ply the SLP on the flat feature tensor and then reconstruct
the neighborhood just before the max-pooling layer (Algo-
rithm 1). The same can be used for the backward pass (see
Algorithm 2).

2.1.4 Deep LPN

Our deep architecture builds on LPN to design a deeper ar-
chitecture. For our experiments, we double the size of the
encoding part by repeating each convolution block twice.
For each encoding segment, we position the sampling block
after the third convolution block, so that the first half of the
convolution blocks are processing a higher resolution point
cloud and the other half a coarser version.

Algorithm 1: Low-memory grouping - Forward
pass

Data: Input features tensor Tf (N ×RD), input spatial tensor
Ts (N ×R3) and indices of each point’s neighborhood for
lookup operation L (N ×K)

Result: Output feature tensor T o
f (N ×RD

′
)

1 begin
/* Lifting each point/feature to RD

′

*/
2 Tf ′ ←− SLPf (Tf )
3 Ts′ ←− SLPs(Ts)

/* Neighborhood features

(N ×RD
′
→ N ×RD

′
× (K + 1)) */

4 T K
f ′ ←− IndexLookup(Tf ′ , Ts′ ,L)
/* Neighborhood pooling

(N ×RD
′
× (K + 1)→ N ×RD

′
) */

5 T o
f
′ ←− MaxPooling(T K

f
′ )

6 FreeMemory(T
s
′ , T

f
′ , T K

f
′ )

7 return T o
f
′

8 end

Algorithm 2: Low-memory grouping - Backward
pass

Data: Input features tensor Tf (N ×RD), input spatial tensor
Ts (N ×R3), gradient of the output Gout and indices of
each point’s neighborhood for lookup L (N ×K)

Result: Gradient of the input Gin and gradient of the weights Gw
1 begin

/* Gradient Max Pooling

(N ×RD
′
→ N ×RD

′
× (K + 1)) */

2 Gmp
out ←− BackwardMaxPooling(Gout)

/* Flattening features

(N ×RD
′
× (K + 1)→ N ×RD

′
) */

3 Gflout ←− InverseIndexLookup(Gmp
out,L)

/* Gradient wrt. input/weight */

4 Gw,Gin ←− BackwardSLP(Tf , Ts,Gflout)

5 FreeMemory(Tf , Ts,Gout,Gmp
out,G

fl
out)

6 return (Gin,Gw)

7 end

2.2. DGCNN based architecture

Starting from the authors’ exact implementation, we
swap each edge-conv layer, implemented as an MLP, by a
sequence of single resolution convPN blocks. This set of
convPN blocks replicates the sequence of layers used to de-
sign the MLPs in the original implementation.

To allow the use of residual links, a transition block is
placed before each edge-conv layer to match the dimension
of both ends of the residual links.

2.3. SpiderCNN based architecture

A SpiderConv block can be seen as a bilinear operator
on the input features and on a non-linear transformation of



the input points. This non-linear transformation consists of
changing the space where the points live in.

In the original architecture, an SLP is first applied to the
transformed points to compute the points’ Taylor expansion.
Then, each output vector is multiplied by its corresponding
feature. Finally a convolution is applied on the product.
Therefore, the neighborhood features can be built on-the-fly
within the block and deleted once the outputs are obtained.
We thus modify the backward pass to reconstruct the needed
tensors when needed for gradient computation.

2.4. PointCNN based architecture

For PointCNN, we modify the χ-conv operator to avoid
having to store the neighborhood features tensors for the
backward pass. To do so, we make several approximations
from the original architecture.

We replace the first MLP used to lift the points by a
sequence of convPN blocks. Thus, instead of learning a
feature representation per neighbor, we retain only a global
feature vector per representative point.

We change as well the first fully connected layer used
to learn the χ-transformation matrix. This new layer now
reconstructs the neighborhood features on-the-fly from its
inputs and deletes it from memory as soon as its output
is computed. During the backward pass, the neighborhood
features tensor is easily rebuilt to get the required gradients.

We implement the same trick for the convolution opera-
tor applied to the transformed features. We further augment
this layer with the task of applying the χ-transformation to
the neighborhood features once grouped.

Finally, we place transition blocks between each χ-conv
layer to enable residual links.

2.5. Implementation details

In all our experiments , we process the dataset to have
the same number of points N for each sample. To reach
a given number of points, input pointclouds are downsam-
pled using the furthest point sampling (FPS) algorithm or
randomly upsampled.

We keep the exact same parameters as the original net-
works evaluated regarding most of parameters.

To regularize the network, we interleave a dropout layer
between the last fully connected layers and parameterize it
to zero 70% of the input neurons. Finally, we add a weight
decay of 5e-4 to the loss for all our experiments.

All networks are trained using the Adam optimizer to
minimize the cross-entropy loss. The running average coef-
ficients for Adam are set to 0.9 and 0.999 for the gradient
and its square, respectively.

References
[1] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat

Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-

lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and
Fisher Yu. ShapeNet: An Information-Rich 3D Model Repos-
itory. Technical Report arXiv:1512.03012 [cs.GR], Stanford
University — Princeton University — Toyota Technological
Institute at Chicago, 2015. 1

[2] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber,
Thomas Funkhouser, and Matthias Nießner. Scannet: Richly-
annotated 3d reconstructions of indoor scenes. In Proc. Com-
puter Vision and Pattern Recognition (CVPR), IEEE, 2017. 1

[3] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,
and Baoquan Chen. Pointcnn: Convolution on x-transformed
points. 2018. 2, 3

[4] Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna
Tripathi, Leonidas J. Guibas, and Hao Su. Partnet: A large-
scale benchmark for fine-grained and hierarchical part-level
3d object understanding. CoRR, abs/1812.02713, 2018. 1

[5] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification and
segmentation. CVPR, 1(2):4, 2017. 1

[6] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In NIPS, pages 5099–5108, 2017.
2, 3

[7] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. arXiv preprint
arXiv:1801.07829, 2018. 2, 3

[8] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao.
Spidercnn: Deep learning on point sets with parameterized
convolutional filters. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 87–102, 2018. 2,
3


