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A. Additional Implementation Details

Our MaskGAN is composed of four key components:
MaskVAE, Dense Mapping Network, Alpha Blender, and
Discriminator. Specifically, Dense Mapping Network con-
tains two elements: Image Generation Backbone, Spatial-
Aware Style Encoder. More details about the architecture
design of these components and training details are shown
below.
MaskVAE. The architecture of MaskVAE is similar to
UNet [6] without skip-connection. Detailed architectures
of EncVAE and DecVAE are shown in Fig. 1 which uses
BN for all layers.
Image Generation Backbone. We choose the architecture
of Pix2PixHD [7] as Image Generation Backbone. The
detailed architecture is as follow:
c7s1−64, d128, d256, d512, d1024, R1024, R1024, R1024,
R1024, u512, u256, u128, u64− c7s1.
We utilize AdaIN [2] for all residual blocks, other layers
use IN. We do not further utilize a local enhancer because
we conduct all experiments on images with a size of 512 ×
512.
Spatial-Aware Style Encoder. As shown in Fig. 2, Spatial-
Aware Style Encoder consists of two branches for receiving
both style and spatial information. To fuse two different
domains, we leverage SFT Layers in SFT-GAN [8]. The
detailed architecture of SFT Layer is shown in Fig. 3 which
does not use any normalization for all layers.
Alpha Blender. Alpha Blender also follows the desing of
Pix2PixHD but only downsampling three times and using
three residual blocks. The detailed architecture is as follow:
c7s1−32, d64, d128, d256, R256, R256, R256, u128, u64,
u32− c7s1 which uses IN for all layers.
Discriminator. Our design of discriminator also follows
Pix2PixHD [7] which utilize PatchGAN [3]. We concate-
nate the masks and images as inputs to realize conditional
GAN [5]. The detailed architecture is as follow:
c64, c128, c256, c512 which uses IN for all layers.
Training Details. Our Dense Mapping Network and
MaskVAE are both updated with the Adam optimizer [4]
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Figure 1: Architecture of MaskVAE.

(β1 = 0.5, β2 = 0.999, learning rate of 2e−4). For Editing
Behavior Simulated Training, we reduce the learning rate
to 5e−5. MaskVAE is trained with batch size of 16 and
MaskGAN is trained with the batch size of 8.

B. Additional Ablation Study
A simple quantitative comparison is shown in Table.

1. SFT layers utilize more parameters to fuse to different
domains together. As a result, it is reasonable that SFT
layers have better effect than concatenation.

In Fig. 4, we show a visual comparison of style copy.
The results with EBST have better color saturation and
attribute keeping quality (heavy makeup).

C. Additional Visual Results
In Fig. 5, Fig. 6, Fig. 7, and Fig. 8, we show additional

visual results of attribute transfer for a specific attribute:
Smiling. We compare our MaskGAN with state-of-the
art methods including Pix2PixHD [7] with modification,
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Figure 2: Architecture of Spatial-Aware Style Encoder.
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Figure 3: Architecture of Spatial Feature Transform Layer.
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Figure 4: Visual comparisons of training with and without
EBST.

ELEGANT [9], and StarGAN [1].
In Fig. 9, Fig. 10, Fig. 11 and Fig. 12, we show ad-

ditional visual results of style. We compare our MaskGAN
with state-of-the art methods including Pix2PixHD [7] with
modification.

In the accompanying video, we demonstrate our interac-
tive facial image manipulation interface. Users can edit the
shape of facial components or add some accessories toward
manipulating the semantic segmentation mask.
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Figure 5: Visual results of attribute transfer for a specific attribute: Smiling. * means the model is trained with a size of 256
× 256.
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Figure 6: Visual results of attribute transfer for a specific attribute: Smiling. * means the model is trained with a size of 256
× 256.
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Figure 7: Visual results of attribute transfer for a specific attribute: Smiling. * means the model is trained with a size of 256
× 256.
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Figure 8: Visual results of attribute transfer for a specific attribute: Smiling. * means the model is trained with a size of 256
× 256.
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Figure 9: Visual results of style copy.
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Figure 10: Visual results of style copy.
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Figure 11: Visual results of style copy.
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Figure 12: Visual results of style copy.
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