
6. Supplementary Material
6.1. Update of τ

To meet the memory limitation (parameter constraint) of
any platform, we only need to update τ in our approach. We
show the proof of the update of τ as follows:

τi = τi−1 −∆τi−1 (12)

= τi−1 − η
∂ 1

2 (h(f(x|W ,Φ(τi−1|Θ)))− τ̂)2

∂τi−1
(13)

= τi−1 − η(h(f(x|W ,Φ(τi−1|Θ)))− τ̂) (14)

· ∂h(f(x|W ,Φ(τi−1|Θ)))

∂Φ(τi−1|Θ)

∂Φ(τi−1|Θ)

∂τi−1
(15)

= τi−1 − η(h(f(x|W ,Φ(τi−1|Θ)))− τ̂)

L∑
l=1

βlαlτ
βl−1
i−1 .

(16)

Note that (15) comes from the chain rule of derivative.

6.2. Accuracy Comparisons

In this section we show the tabularized compari-
son of VGG11-CIFAR100, MobileNetV2-CIFAR100 and
ResNet18-TinyImageNet which was not shown in the
main paper. As shown in Table 2, an accuracy gain of
5.85%, 2.40% and 3.04% is observed for VGG11, Mo-
bileNetV2 and ResNet18 on CIFAR100, TinyImageNet and
CIFAR100 respectively.

6.3. Pre-Training Epochs P

The pruning of neural network is usually done on a pre-
trained network. As we want our algorithm to be efficient
in terms of search cost, we explore the possibility of reduc-
tion in time or epochs for network pre-training by tuning
the pre-training epochs P . To our surprise, having a large
P does not result in an architecture with the best perfor-
mance. Here, we investigate how P affects the accuracy of
the final configuration, proving that conventional wisdom
on when to apply pruning might be flawed. Experiments
will be shown on VGG11 and MobileNetV2 on CIFAR10
and CIFAR100 respectively. All results shown are based on
the final (iteration=15) iteration of architecture descent.

VGG11. CIFAR10 will be used for the experimentation
on P for VGG11. We show architecture and results ob-
tained by setting P to be 0, 2, 5, 10, 30 and 60. The searched
architecture is shown in Figure 6. We next show the com-
parison plot using different pre-training epochs in Figure 7
accompanied by Table 3. For a simple network like VGG11,
the number of pre-training epochs doesn’t have too much of
an impact in performance which can be clearly observed in
the resulting filter configuration in Figure 6.

Table 2: Comparison of various network-dataset pairs.

Method Params Latency Accuracy (%)

VGG11 CIFAR100

Uniform Scale
(Baseline)

0.59M 1.30ms 60.22 ± 0.45
5.23M 4.28ms 68.56 ± 0.21

36.99M 18.83ms 71.94 ± 0.25

Li et al. [29]† 5.23M 4.77ms 68.41 ± 0.09

MorphNet [12]
(Taylor-FO [35])

0.59M 1.78ms 64.85 ± 0.17
5.21M 7.18ms 70.64 ± 0.38

36.80M 41.52ms 72.72 ± 0.09

NeuralScale
(Iteration = 1)

0.59M 1.95ms 65.71 ± 0.28
5.23M 7.36ms 70.50 ± 0.16

36.98M 33.24ms 72.78 ± 0.19

NeuralScale
(Iteration = 15)

0.59M 2.52ms 66.07 ± 0.21
5.23M 10.19ms 70.70 ± 0.45

36.98M 43.95ms 72.78 ± 0.13

MobileNetV2 TinyImageNet
Uniform Scale

(Baseline)
0.23 8.53ms 44.22 ± 0.40

1.52M 18.87ms 54.63 ± 0.46

Li et al. [29]† 1.52M 18.76ms 52.71 ± 0.28

MorphNet [12]
(Taylor-FO [35])

0.23M 10.47ms 44.53 ± 0.50
1.51M 28.88ms 53.08 ± 0.52

NeuralScale
(Iteration = 1)

0.22M 14.96ms 49.70 ± 0.73
1.49M 26.98ms 54.18 ± 0.57

NeuralScale
(Iteration = 15)

0.22M 17.16ms 46.82 ± 0.89
1.49M 41.20ms 55.42 ± 0.44

ResNet18 CIFAR100

Uniform Scale
(Baseline)

0.71M 2.53ms 68.10 ± 0.40
6.32M 9.98ms 75.10 ± 0.34

44.75M 47.04ms 78.39 ± 0.29

Li et al. [29]† 6.32M 10.18ms 73.91 ± 0.12

MorphNet [12]
(Taylor-FO [35])

0.72M 3.73ms 69.34 ± 0.31
6.29M 15.03ms 75.60 ± 0.40

44.53M 98.54ms 78.68 ± 0.17

NeuralScale
(Iteration = 1)

0.71M 4.51ms 70.63 ± 0.13
6.38M 11.95ms 75.83 ± 0.15

45.15M 50.24ms 78.39 ± 0.22

NeuralScale
(Iteration = 15)

0.71M 5.71ms 71.14 ± 0.45
6.36M 19.54ms 76.35 ± 0.20

45.05M 90.18ms 78.62 ± 0.13
† Fine-tuned using pre-trained network (not trained from scratch).

MobileNetV2. CIFAR100 will be used for the experi-
mentation on P for MobileNetV2. We show architecture
and results obtained by setting P to be 0, 2, 5, 10, 30 and



0
1

2
3

4
5

6
7

Ratio=0.25 Ratio=0.75

0 2 4 6 8 10 12 14

0
1

2
3

4
5

6
7

Ratio=1.25

0 2 4 6 8 10 12 14

Ratio=2

50

75

100

125

150

80

160

240

320

400

480

150

300

450

600

750

250

500

750

1000

1250

Iteration

L
ay

er

(a) P = 0

0
1

2
3

4
5

6
7

Ratio=0.25 Ratio=0.75

0 2 4 6 8 10 12 14

0
1

2
3

4
5

6
7

Ratio=1.25

0 2 4 6 8 10 12 14

Ratio=2

50

75

100

125

150

100

200

300

400

500

200

400

600

800

1000

300

600

900

1200

1500

1800

Iteration

L
ay

er

(b) P = 2
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(c) P = 5
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(d) P = 10
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(e) P = 30
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(f) P = 60

Figure 6: Showing the difference in searched architecture by running architecture descent on VGG11 for CIFAR10 using
various value of pre-training epochs P .
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Figure 7: Accuracy comparison plot for VGG11 on CI-
FAR10 that uses different pre-training epochs P before
pruning. (a) shows the accuracy comparison under different
parameters using different value of P . (b) shows the com-
parison of accuracy under different latencies using different
value of P .

60. The searched architecture is shown in Figure 8. We
next show the comparison plot using different pre-training
epochs in Figure 9 accompanied by Table 4. It is interest-
ing to see that for a deeper and more complicated network
like MobileNetV2, there’s a notable variation in the distri-
bution of filters with respect to the number of pre-training
epochs. The accuracy comparison in Figure 9 shows that

Table 3: Accuracy comparison on VGG11 for CIFAR10 us-
ing different pre-training epochs P .

Method Params Latency Accuracy (%)

Uniform Scale
(Baseline)

0.58M 1.30ms 88.18 ± 0.16
5.20M 4.31ms 91.64 ± 0.10
36.89M 19.50ms 92.96 ± 0.09

NeuralScale
(P = 0)

0.58M 3.01ms 91.23 ± 0.05
5.20M 12.35ms 92.62 ± 0.06
36.89M 53.26ms 93.24 ± 0.09

NeuralScale
(P = 2)

0.58M 3.49ms 91.29 ± 0.09
5.20M 20.24ms 92.80 ± 0.09
36.90M 81.27ms 93.25 ± 0.10

NeuralScale
(P = 5)

0.58M 3.34ms 91.18 ± 0.13
5.19M 17.30ms 92.58 ± 0.08
36.90M 63.85ms 93.31 ± 0.08

NeuralScale
(P = 10)

0.58M 2.93ms 91.22 ± 0.15
5.20M 12.53ms 92.63 ± 0.12
36.90M 55.44ms 93.29 ± 0.09

NeuralScale
(P = 30)

0.58M 2.82ms 91.22 ± 0.15
5.20M 11.85ms 92.76 ± 0.13
36.90M 51.02ms 93.26 ± 0.08

NeuralScale
(P = 60)

0.58M 2.85ms 91.16 ± 0.17
5.20M 12.58ms 92.66 ± 0.18
36.89M 61.14ms 93.42 ± 0.13

having large number of pre-training epochs doesn’t help the
efficiency in parameters and instead impedes it. It is shown
that P = 2 or P = 5 gives us a configuration of filters
that is the most efficient in terms of parameters for Mo-
bileNetV2 on CIFAR100. This is an interesting observation
which sheds light on the number of pre-training iterations
required prior to network pruning for optimal performance.

6.4. Using Convolutional Layers as Shortcut Con-
nection

By default, MobileNetV2 has shortcut connections com-
posed of identity mappings. By modifying the filter sizes
of MobileNetV2, the shortcut connection has to be changed
to a convolutional one instead to compensate the difference
in filter sizes on both ends of the shortcut connection. A
surprising finding is that the change from identity mapping
to convolutional mapping affects the original performance
significantly, despite the increase in parameter. We show
experiments comparing two kinds of shortcut connection
(identity and convolutional) on the original configuration
which is uniformly scaled to different ratios. We name
the method that uses convolutional shortcuts as ConvCut.
A comparison plot comparing ConvCut with other scaling
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(b) P = 2
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(c) P = 5
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(d) P = 10
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(e) P = 30
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(f) P = 60

Figure 8: Showing the difference in searched architecture by running architecture descent on MobileNetV2 for CIFAR100
using various value of pre-training epochs P .
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Figure 9: Accuracy comparison plot for MobileNetV2 on
CIFAR100 that uses different pre-training epochs P before
pruning. (a) shows the accuracy comparison under different
parameters using different value of P . (b) shows the com-
parison of accuracy under different latencies using different
value of P .

methods using ResNet18 and MobileNetV2 on TinyIma-
geNet is shown in Figure 10 and 11 respectively. Results are
summarized in Table 6 and Table 5 for ResNet18 and Mo-
bileNetV2 respectively. It can be observed that the switch
from identity to convolutional mapping doesn’t have drastic
impact on the accuracy of ResNet18 but a significant drop in
accuracy can be observed for MobileNetV2. Our conjecture

Table 4: Accuracy comparison on MobileNetV2 for CI-
FAR100 using different pre-training epochs P .

Method Params Latency Accuracy (%)

Uniform Scale
(Baseline)

0.20M 5.53ms 57.80 ± 0.31
1.42M 7.56ms 67.85 ± 0.38
9.30M 20.43ms 72.40 ± 0.22

NeuralScale
(P = 0)

0.19M 6.64ms 66.49 ± 0.43
1.40M 18.77ms 71.39 ± 0.45
9.27M 52.49ms 74.93 ± 0.34

NeuralScale
(P = 2)

0.19M 9.42ms 67.04 ± 0.28
1.40M 24.95ms 72.98 ± 0.26
9.27M 67.55ms 75.51 ± 0.41

NeuralScale
(P = 5)

0.19M 8.61ms 66.74 ± 0.39
1.40M 21.37ms 72.54 ± 0.18
9.26M 51.63ms 75.19 ± 0.26

NeuralScale
(P = 10)

0.19M 7.82ms 66.36 ± 0.28
1.41M 18.02ms 71.94 ± 0.45
9.27M 43.00ms 74.73 ± 0.26

NeuralScale
(P = 30)

0.19M 6.20ms 65.53 ± 0.31
1.41M 13.35ms 70.64 ± 0.23
9.21M 31.77ms 74.14 ± 0.35

NeuralScale
(P = 60)

0.19M 6.15ms 66.28 ± 0.13
1.40M 13.74ms 71.18 ± 0.24
9.27M 32.15ms 74.15 ± 0.18

is that the design of linear bottleneck layers in MobileNetV2
is to embed a low-dimensional manifold where switching
from identity to convolutional mapping for shortcut layer
that connects linear bottleneck layers introduces noise to
this manifold which is harmful for information propagation
and network training. Despite from the setback of accuracy
drop through the introduction of convolutional shortcut lay-
ers, our approach is still able to induce accuracy gain in a
low parameter count setting when compared to the baseline
configuration setting, showing the importance of searching
for the optimal configuration of filters. An unbiased com-
parison is to compare our approach with the convolutional
shortcut (ConvCut) version of MobileNetV2 using the de-
fault set of filter configuration as shown in Figure 10 where
both (ours and ConvCut) use convolutional layer as short-
cut connection. On an apple-to-apple comparison, our ap-
proach shows superiority in parameter efficiency. This em-
pirical study also explains the superiority in accuracy of it-
eration 1 when compared to iteration 15 of our approach as
can be observed in Figure 10a. From our observation, itera-
tion 1 of our approach generates a configuration composed
repeated filters on some blocks, resulting in an architecture
consisting of both identity and convolutional shortcut con-
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Figure 10: Accuracy comparison plot for MobileNetV2 on
TinyImageNet with inclusion of ConvCut.

nection. Hence, it is not surprising that iteration 1 outper-
forms iteration 15 of our approach as it has both traits: iden-
tity shortcut and optimized filter configuration.
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Figure 11: Accuracy comparison plot for ResNet18 on
TinyImageNet with inclusion of ConvCut.



Table 5: Accuracy comparison on MobileNetV2 on Tiny-
ImageNet (includes ConvCut).

Method Params Latency Accuracy (%)

Uniform Scale
(Baseline)

0.23M 8.53ms 44.22 ± 0.40
1.52M 18.87ms 54.63 ± 0.46
2.58M 24.70ms 56.62 ± 0.70

MorphNet [12]
(Taylor-FO [35])

0.23M 10.47ms 44.53 ± 0.50
1.51M 28.88ms 53.08 ± 0.52
2.57M 38.45ms 54.42 ± 0.53

Uniform Scale
(ConvCut)

0.24M 9.23ms 40.16 ± 0.63
1.57M 19.23ms 49.54 ± 0.30
2.66M 25.39ms 50.85 ± 0.27

NeuralScale
(Iteration = 1)

0.22M 14.96ms 49.70 ± 0.73
1.49M 26.98ms 54.18 ± 0.57
2.54M 32.09ms 54.52 ± 0.72

NeuralScale
(Iteration = 15)

0.22M 17.16ms 46.82 ± 0.89
1.49M 41.20ms 55.42 ± 0.44
2.54M 52.76ms 55.50 ± 0.51

Table 6: Accuracy comparison on ResNet18 on TinyIma-
geNet (includes ConvCut).

Method Params Latency Accuracy (%)

Uniform Scale
(Baseline)

0.73M 3.02ms 50.54 ± 0.37
6.36M 11.56ms 56.68 ± 0.28

11.27M 15.46ms 57.96 ± 0.23

MorphNet [12]
(Taylor-FO [35])

0.72M 3.80ms 50.79 ± 0.38
6.39M 14.83ms 56.78 ± 0.85

11.31M 22.07ms 57.91 ± 0.38

Uniform Scale
(ConvCut)

0.75M 3.64ms 50.50 ± 0.46
6.56M 11.99ms 56.87 ± 0.88

11.62M 15.98ms 57.41 ± 0.58

NeuralScale
(Iteration = 1)

0.72M 5.96ms 51.66 ± 0.80
6.42M 14.58ms 57.89 ± 0.28

11.37M 22.11ms 58.75 ± 0.37

NeuralScale
(Iteration = 15)

0.72M 6.42ms 53.95 ± 0.53
6.40M 17.52ms 58.40 ± 0.54

11.35M 25.94ms 59.52 ± 0.63


