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Figure 1: Qualitative results of our method on the CelebA [11] dataset. Each row has the same content while each column
has the same reference.

6. Appendix

This supplementary document presents additional details
of the paper. Section 6.1 discusses the effects of our spa-
tially corresponding feature transfer mechanism with quan-
titative results. Section 6.2 demonstrates the human evalu-
ation results that compare ours against baseline methods.
Afterwards, Section 6.3 reports implementation details in-
cluding network architectures, the processes of generating
augmented-self reference images, and other training details.
Comparisons to an existing study which shares similar net-
work architectures are described in Section 6.4. Lastly, Sec-
tion 6.5 addresses the case where a reference image does
not exist. Qualitative results generated by our method are

also shown throughout the document.

6.1. Effects of Aggregation Methods

The key assumption behind SCFT is that integrating spa-
tially aligned reference features with content features would
help reflect the exact color from the reference into corre-
sponding positions. To prove this assumption, we compare
our SCFT with two simple types of aggregation methods
as shown in Fig. 2. Methods are as follows: (a) representa-
tions of the reference are simply added to the features of the
content. (b) AdaIN [4] is utilized to transfer the style of ref-
erence by aligning the channel-wise mean and variance of
content to match those of reference. (c) our SCFT module.

Qualitative comparison over three methods is shown in



ImageNet Human Face Comics Hand-drawn
Aggregation Method Cat Dog Car CelebA Tag2pix Yumi’s Cells Edges2Shoes
(a) Addition 78.47 103.73 55.80 51.94 47.72 47.67 117.15
(b) AdaIN 75.17 105.72 52.85 50.61 52.81 45.36 88.46
(c) SCFT (ours) 74.12 102.83 52.23 47.15 45.34 49.29 78.32

Table 1: FID scores [3] according to different aggregation methods.

Fig. 3. The leftmost column contains sketch and reference,
while next three columns contain colorized images from
(a), (b) and (c), respectively. Method (a) tends not to per-
fectly locate the corresponding regions and results in col-
orizing car with overly yellowish color, which is mainly
background color in the exemplar. Method (b) totally ig-
nores the spatially varying color information, thus coloriz-
ing with dominant color from the reference. (c) is superior
to other methods in terms of color transferability to the cor-
responding position.

𝑉𝑟 𝑉𝑟𝑉𝑠 𝑉𝑟𝑉𝑠𝑉𝑠

𝑊𝑞 𝑊𝑘

⨁

𝐶

(a) Additon 

𝑊𝑞 𝑊𝑘

𝐶

(b) AdaIN 

𝑊𝑞 𝑊𝑘

⨂

𝐶
(c) Ours

⨁

AdaIN

𝑊𝑣

⨂

Figure 2: Diagram of three types of aggregation methods.
(a) Addition block, (b) AdaIN [4] block, (c) Ours (SCFT)

Quantitative results comparing these methods are repre-
sented in Table 1. The network with SCFT module produces
the most realistic results over most of the datasets. This is
because the SCFT module properly aligns the correspond-
ing local regions between the sketch and the reference im-
age by using the attention matrix A. On the other hand, the
method (a) and (b) are not capable of aligning the local fea-
tures of the reference with those of the sketch, resulting in
low FID scores.

In Yumi’s Cells [14] dataset, however, the SCFT mod-
ule produced worse FID score than the others. The poten-
tial reason we assume is that the sketch and the reference
we randomly pair for the inference time often contain dif-
ferent types of objects, e.g., Yumi (a human) and cells (non-
human), which may have negatively impacted the coloriza-
tion output.

Content / 
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Figure 3: A qualitative example obtained from three differ-
ent aggregation methods as shown in Figure 2.

6.2. User Study

We conduct two different human evaluation on the col-
orization outputs over various datasets. First, we randomly
select ten sets of images per dataset, which contain the gen-
erated images from our method and other baselines. Sec-
ond, we also randomly select ten sets of images for ev-
ery dataset, and those contain the images obtained from
the model trained with triplet loss, L1-loss and no supervi-
sion for correspondence, respectively. For both cases, par-
ticipants with no prior knowledge in this work are asked to
rank them in terms of two types of questions sequentially as
follows:
• Overall Colorization Quality and Realism
How natural does the colorized image look? This ques-
tion requires users to evaluate the overall quality of the
generated colorization given an input sketch. The gener-
ated image should be perceptually realistic without any
artifacts or color bleeding across sketches.

• Detailed Reflection of Reference
How well is the colors of the reference image is reflected
to a given sketch part by part? This question asks users to
determine whether the particular color from a reference is
injected into the corresponding regions in the sketch. For
example, given an comics character image with green hair
wearing a blue shirt as a reference, the generated output is
expected to contain these colors at its corresponding hair
and clothing part, respectively.

As seen in Fig. 15 and 16, superior measures indicate
that our approach generates both more realistic and more
faithfully colorized image than other methods. For both



question type 1 and 2, it can be observed that our ap-
proach achieves the rank 1 votings more than 50% over all
the dataset we adopt for user study. When asked the first
question on Comics domain dataset including Tag2pix [8]
and Yumi’s Cell [14], Style2Paints [12] perform realistic
generation quality comparable to our method with a small
gap in top 1 rate. This notable measure is obtained as
Style2Paints [12] is a adept baseline especially on comic
domain. However, the difference in top 1 rate increases as
the users are asked to choose based on faithful colorization
performance. The results demonstrate that our model uti-
lizes the right color from the reference, which results in both
realistic and exquisitely colorized output.

The results in Fig. 17 demonstrates that the model
trained with triplet loss obtains more realistic and faithfully
colorized outputs than with L1-loss or no loss. Furthermore,
along with the explanation of similarity-based triplet loss in
Section 3.4 of the paper, these results support that the super-
vision for semantic correspondence with the L1-loss leads
to the inferior colorization performance even compared to
the model without any supervision.

6.3. Implementation Details

This section provides the implementation details of our
model, complementary to Section 3.5 of the paper.
Augmented-Self Reference Generation To automatically
generate a sketch image from an original color image, We
utilize a widely-used algorithm called XDoG [17]. The out-
puts, however, often involves superfluous edges, so in order
to suppress them, we apply Gaussian blurring (σ = 0.7)
to the original images before extracting sketches. The ap-
pearance transformation a(·) adds randomly sampled value
from a uniform distribution on [-50, 50] to each of the RGB
channels of the original image.
Encoder Our generator G contains two types of encoder,
Es andEr. Both of them share the same architecture shown
in Table 2, except for the number of input channels of
the first layer, where Es takes a single-channel, binarized
sketch input whileEr takes a three-channel, RGB reference
image. We utilize the an average pooling function for down-
sampling ϕ in Section 3.3 of the paper.
Resblocks We place four stacked residual blocks [2] with a
kernel size of 3 and a stride of 1. Batch normalization [6]
follows each convolutional block, and ReLU is used as the
activation function.
Discriminator We adopt our discriminator architecture as
PatchGAN [7]. We utilize the LSGAN [13] objective for
the stable training.
Training Details For all the experiments, our network is
trained using Adam optimizer [9] with β1 = 0.5 and
β2 = 0.999. We set an initial learning rate for the gener-
ator as 0.0001 and that for the discriminator as 0.0002. We
train the model for the first 100 epochs using the same learn-

Layer Encoder
L1 Conv(I:C,O:16,K:3,P:1,S:1), Leaky ReLU:0.2
L2 Conv(I:16,O:16,K:3,P:1,S:1), Leaky ReLU:0.2
L3 Conv(I:16,O:32,K:3,P:1,S:2), Leaky ReLU:0.2
L4 Conv(I:32,O:32,K:3,P:1,S:1), Leaky ReLU:0.2
L5 Conv(I:32,O:64,K:3,P:1,S:2), Leaky ReLU:0.2
L6 Conv(I:64,O:64,K:3,P:1,S:1), Leaky ReLU:0.2
L7 Conv(I:64,O:128,K:3,P:1,S:2), Leaky ReLU:0.2
L8 Conv(I:128,O:128,K:3,P:1,S:1), Leaky ReLU:0.2
L9 Conv(I:128,O:256,K:3,P:1,S:2), Leaky ReLU:0.2

L10 Conv(I:256,O:256,K:3,P:1,S:1), Leaky ReLU:0.2

Table 2: The network architecture of Encoder E. Conv de-
notes a convolutional layer. I, O, K, P, and S denote the
number of input channels, the number of output channels,
a kernel size, a padding size, and a stride size, respectively.

ing rate, and then we linearly decay it to zero until the 200
epochs. We set the margin value γ = 12 for our triplet loss
(Eq. 5 in the paper). The batch size is set as 16. The pa-
rameters of all our models are initialized according to the
normal distribution which has a mean as 0.0 and a standard
deviation as 0.02.
Baselines We exploit Sun [16] and Style2Paints [12] as
the sketch image colorization methods, Huang [2018] [5],
and Lee [10] as the image translation methods and Huang
[2017] [4] as the style transfer method as our baselines.
For Style2Paints [12], we generate the images based on the
publicly available Style2Paints V3 in a similar manner to
Tag2pix [8]. For the other methods, we utilize the officially
available codes to colorize images after training them on our
datasets.

6.4. Comparison to Zhang et al. (2019) [18].

In this section, we discuss the detailed comparison be-
tween our method and Zhang et al.. These two works have
similarity in that they both exploit geometric distortion for
data augmentation and semantic correspondence module for
color guidance. However the significant difference of our
model against Zhang et al. lies in (1) direct supervision
of semantic correspondence and (2) generalized attention
module.
Direct supervision Our model directly supervises the atten-
tion module via a triplet loss, which enables the optimiza-
tion of the attention module in an end-to-end manner. This
fully trainable encoder encourages to generate plausible re-
sults over a wide range of datasets from real-world photos to
comic images, as show in Fig. 4 of the paper and Fig. 9. In
contrast, Zhang et al. requires a pre-trained, already reliable
attention module, which is only indirectly supervised via a
so-called contextual loss. According to Geirhos et al. (2019)
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Figure 4: Qualitative results of our Zhang et al. [18] given
gray-scale source image (row (a)) and sketch image (row
(b)). In contrast to the output in the row (a), output in (b)
fails to colorize the eyes with the color from the reference
and spreads the yellow color over the face.

[1], the features extracted from the ImageNet pre-trained
encoder may be severely degraded for a sketch image due
to large domain shifts. In this sense, Zhang et al.’s work may
not be easily applicable to sketch image colorization tasks,
and the examples of failure case are shown in Fig. 4. We
reimplemented the code of Zhang et al., trained and tested
the model over cat dataset. As this baseline exploits the Im-
ageNet pre-trained encoder, row (a) shows that it produces
the plausible colorized output given gray-scale source im-
age. However, when given information scarce sketch image
(row (b)), it fails to obtain the dense correspondence with
the reference image, resulting in degraded output.
Generalized attention module Inspired by the self-
attention module in the Transformer networks, our atten-
tion module involves different query, key, and value map-
pings for flexibility, while Zhang et al. use a relatively sim-
ple module. More importantly, in terms of value vectors,
Zhang et al. uses only raw color values, but ours uses all
the available low- to high- level semantic information ex-
tracted from multiple layers. In this respect, ours is capa-
ble of transferring significantly richer contextual informa-
tion than just low-level color information.

6.5. Colorization without reference.

Our main scope is focused on the colorization task with a
reference available, but we can easily extend our method for
no-reference cases by occasionally providing a zero-filled
image as a reference to the networks during the training
time. We feed the zero-filled image to our model as a ref-
erence with a ratio of 9:1 at the training time. As shown in
Fig. 5, we confirm that our network still generates a rea-
sonable quality of colorization output at test time. In this

Sketch Reference Output Original

Figure 5: A qualitative example when there is no reference
image. Our model takes the first column image (sketch) as a
target and the second column image (zero-filled reference)
to synthesize the third column image (output). The results
of first row, second-to-third rows, last row are obtained from
our model trained for Yumi’s Cells [14], Tag2pix [8], and
CelebA [11], respectively.

case, the zero-filled reference image does not have any in-
formation to guide. Therefore, the model is encouraged to
synthesize an output image with colors that often appear in
trainset conditioned on the sketch image. We recall that the
main goal of this work is not restricted to generating the
original image.
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Figure 6: Qualitative results of our method on the Tag2pix [8] dataset.
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Figure 7: Qualitative results of our method on the Edges→Shoes [7] dataset.
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Figure 8: Qualitative results of our method on the ImageNet [15] dataset.
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Figure 9: Qualitative comparisons with the baselines on the Tag2pix dataset.
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Figure 10: Qualitative results of our method on the Edges→Shoes dataset.
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Figure 11: Qualitative comparisons with baselines on the CelebA dataset.
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Figure 12: Qualitative comparisons with baselines on the ImageNet [15] dataset.
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Figure 13: Qualitative comparisons with baselines on the Yumi’s Cells [14] dataset.
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Figure 14: The visualization of attention maps on CelebA and Tag2pix dataset. The colored squares on the second column
indicate the query region and corresponding key regions are highlighted in the next four columns. The different color of
square means the different query region, and each red, blue, yellow, and green corresponds with the column (a), (b), (c), and
(d), respectively.
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Figure 15: The results of the user study for comparison between our model and existing baselines. Question type 1: Overall
Colorization Quality and Realism.
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Figure 16: The results of the user study for comparison between our model and existing baselines. Question type 2: Detailed
Reflection of Reference.
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Figure 17: The results of the user study for comparison between model with triplet loss, L1-loss and no loss. The percentages
are averaged over all the datasets.


