
Appendix for Deep Iterative Surface Normal Estimation

1. Overview
The supplemental materials contain details about the

graph neural network in Section 2, information about the
implementation in Section 3, a short discussion about the
spatial transformer in 4, and an additional analysis of ac-
curacy over re-weighting iterations in Section 5. Further,
we show results for transferring models between different
neighborhood sizes in Section 6 and qualitative results for
the whole PCPNet test set in Section 7.

2. Architecture Details
The graph neural network for the deep kernel parameter-

ization follows a general message passing scheme [1] with
edge update function

fe(i, j) = h
(
f(i) |di,j |prf(i, j)

)
(1)

and node update function

f(i) = γ
(1

|N (i)|
∑

j∈N (i)

fe(i, j)
)

, (2)

consisting of 6 MLPs, hi and γi for i ∈ {1, 2, 3}. To-
gether with the kernel MLP ψ, all functions are detailed in
Table 1 The hi and ψ networks are shared over all edges
in the neighborhood graph while the γi are shared over all
points. Additionally, all MLPs are shared over the iterations
of the algorithm. Each MLP consists of two linear layers,
seperated by a ReLU non-linearity. Layer sizes are given in
Table 1. All in all, the networks contain 7981 parameters
and fulfill the following properties.

Permutation Invariance Neighborhood aggregation is
performed using an average operator, which is invariant re-
garding the order of points. Since there are no other func-
tions over sets of points, the resulting network is permu-
tation invariant. We refer to [2] for further discussion. It
should be noted that PointNet can also be expressed in the
same message passing scheme and is permutation invariant
for the same reasons.

Varying neighborhood sizes For the cases in which we
decide to use a radius graph instead of a k-nn graph, the net-
work allows differently sized neighborhoods in one graph,

Network Architecture

h1 L(32), ReLU , L(16)
γ1 L(32), ReLU , L(8)
h2 L(32), ReLU , L(16)
γ2 L(32), ReLU , L(8)
h3 L(32), ReLU , L(16)
γ3 L(32), ReLU , L(12)
ψ L(64), ReLU , L(1)

Table 1: Details of the used graph neural network for iter-
ative re-weighting. L(x) stands for a fully-connected layer
with x output neurons.

since all parameters are shared over edge or nodes and the
only operation over the whole neighborhood, the average, is
agnostic to the neighborhood size.

Locality Due to using only local operators, the presented
algorithm can be applied on partial point clouds, which is
of importance for many practical applications.

3. Implementation Details
The implementation of the proposed algorithm is based

on the Pytorch Geometric library [1] and uses the provided
scheme consisting of scattering and gathering between node
and edge feature space. Therefore, varying neighborhood
sizes (e.g. varying node degree) can still be handled in par-
allel on the GPU by parallelization in graph edge space.

For parallel eigendecomposition of a large number of
symmetric 3 × 3 matrices and for the parallel quaternion
to rotation matrix map, we provide our own Pytorch ex-
tensions which will be made available online. We provide
efficient forward and backward steps on GPU and CPU.

4. Rotational Spatial Transformer
Our spatial transformer learns to bring the point sets in

canonical orientation, which leads to equivariant behaviour,
as our results show. Directly parameterizing 3 × 3 matri-
ces for the spatial transformer would lead to arbitrary affine
transformations which can easily collapse or diverge during
training. Thus, parameterizing the rotation group SO(3) is

0 1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

30

35

40
Trained for 8 iterations

Iterations

A
ve
ra
g
e
an

g
le

er
ro
r
(R

M
S
E
)

No Noise
Low Noise
Med Noise
High Noise
Stripes
Gradients
Average

Figure 1: Test errors (RMSE) over iterations of the proposed algorithm. Iteration 0 shows results for unweighted PCA only.
The network was trained on the training set for 8 iterations. For evaluation, we perform four additional iterations to evaluate
stability.

Trained on ktrain = 32 Trained on ktrain = 64 Trained on ktrain = 128

ktest 32 48 64 96 128 32 48 64 96 128 32 48 64 96 128

No noise 6.09 6.96 7.43 8.25 8.77 6.13 6.47 6.72 7.10 7.27 6.66 7.01 7.24 7.29 7.35
Noise (σ = 0.00125) 10.22 10.01 10.09 10.37 10.62 10.19 9.93 9.95 10.18 10.35 9.89 9.57 9.50 9.50 9.64
Noise (σ = 0.006) 18.17 17.44 17.22 17.08 17.05 18.28 17.43 17.18 17.01 16.94 20.98 18.40 17.63 17.07 16.90
Noise (σ = 0.012) 25.17 22.97 22.33 21.91 21.80 25.20 22.53 21.96 21.69 21.67 30.99 24.94 23.20 22.34 22.13
Density (Stripes) 7.22 7.92 8.51 9.43 9.90 7.21 7.55 7.73 8.16 8.34 7.80 8.14 8.37 8.61 8.67
Density (Gradients) 6.84 7.46 8.06 8.80 9.21 6.89 7.17 7.51 8.04 8.03 7.48 7.75 8.11 8.39 8.49

Average 12.28 12.12 12.27 12.64 12.89 12.31 11.85 11.84 12.00 12.10 13.97 12.63 12.34 12.20 12.20

Table 2: Results for transferring models between different neighborhood sizes k. Shown are RMSE values for models trained
with ktrain ∈ {32, 64, 128}, each tested with ktest ∈ {32, 48, 64, 96, 128}.

Trained on ktrain = 32

ktest 2 4 8 16 24 32

No noise 17.26 7.23 5.63 5.36 5.77 6.09
Noise (σ = 0.00125) 54.02 49.66 33.65 13.80 10.74 10.22
Noise (σ = 0.006) 61.08 60.91 55.32 28.17 19.78 18.17
Noise (σ = 0.012) 61.29 61.26 58.89 41.37 28.99 25.17
Density (Stripes) 19.50 8.14 6.53 6.36 6.71 7.22
Density (Gradients) 22.89 8.44 6.51 6.23 6.57 6.84

Average 39.34 32.59 27.75 16.88 13.09 12.28

Table 3: Results for transferring the model trained on
ktrain = 32 to even smaller ktest ∈ {2, 4, 8, 16, 24, 32} un-
til the method breaks down. Note that ktest = 2 means 2
neighbors, excluding point i, so there are still 3 points in
total for each neighborhood, avoiding underdefined plane
fitting problems.

the more fitting choice for the given task. Unit quaternions
are a good representation choice because they cover SO(3)
(twice) without any discontinuities, as exist in e.g. Eu-
ler angles or axis-angle representations. Discontinuities in
the SO(3) representation would force the network to some-
times predict very different values for SO(3) elements that
lie next to each other on the Lie group manifold, which can
lead to unstable gradients.

5. Behaviour over iterations

The algorithm is trained for L = 8 (performing 8 iter-
ations of re-weighting), where we compute a loss and per-
form an optimization step after each iteration. It produces
normal vector estimations after each iteration, which can be
analyzed quantitatively. The RMSE results for the PCPNet
test set over algorithm iterations are shown in Figure 1. It
can be seen that after iteration 4, further iterations do not
lead to significant improvements. Also, the algorithm be-

No Noise Low Noise Med. Noise High Noise Stripes Gradients No Noise Low Noise Med. Noise High Noise Stripes Gradients

0

10

20

30

40

50

60

70

80

90

Figure 2: Qualitative results for all examples of the test set. Colors encode the RMSE in degree for each point. Best viewed
in the digital version.

haves reasonable stable, not diverging immediately after we
pass the iterations for which the network was trained. How-
ever, we observe a small drift in favor of low-noise datasets
over the iterations. Errors for the test sets with no noise or
variable density still decrease further while errors for data
with higher noise levels slightly increase. Meanwhile, the
average error stays nearly constant.

6. Transfer between neighborhood sizes
As stated in the main paper, the proposed algorithm

generalizes reasonably well between neighborhood sizes,
meaning that a model trained using neighborhood size ktrain

can be applied using a different neighborhood size ktest

while producing good results. For verification, we report
RSME errors for different combinations of ktrain and ktest

in Table 2. It can be seen that if the difference in neigh-
borhood size is not too big, transferred models often only
perform slightly worse than models trained directly for the
appropriate k. However, transferring over very large differ-
ence like from 128 to 32 or the other way around, leads to
a significant decrease in performance. The model trained
on the balanced k = 64 performs very well on all other
neighborhood sizes.

Additionally, Table 3 provides results for applying the
model on even smaller neighborhood sizes, to evaluate the
minimum k before the method breaks down. We found that

when using a ktrain <≈ 30, the training becomes unstable,
which is why we transfer the model from ktrain = 32 to
smaller ktest = 32. Results show that the algorithm provides
good results for noise-free data down to k = 4. For noisy
data, the approach breaks down quite fast when lowering k,
as expected: At least k = 24 is required to provide reliable
results. For lower k, the results approach the accuracy of
random normals.

7. Further qualitative results
Last, we provide qualitative results for the whole PCP-

Net test set in Figure 2. For point clouds with varying den-
sity, the point size is reduced in order to better visualize
the densities. Similar to examples shown in the paper, we
can see that the method produces very sharp normal vectors,
which usually resemble the plane normal of one of the plau-
sible planes in the neighborhood. The abstract objects are
good examples to show equivariance, as all edges show sim-
ilar errors, independent of orientation. Sometimes, points
are assigned to a false plane, leading to high error normal
vectors. Compared to other approaches, we do not observe
heavy smoothing around edges.

References
[1] M. Fey and J. E. Lenssen. Fast graph representation learning

with PyTorch Geometric. CoRR, abs/1903.02428, 2019. 1
[2] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep

hierarchical feature learning on point sets in a metric space. In
Advances in Neural Information Processing Systems 30, pages
5099–5108. 2017. 1

