Deep Grouping Model for Unified Perceptual Parsing

Supplementary Material

Zhiheng Li' Wenxuan Bao?* Jiayang Zheng! Chenliang Xu!
'University of Rochester 2Tsinghua University

{zhiheng.li, jiayang.zheng, chenliang.xu}@rochester.edu bwxl6@mails.tsinghua.edu.cn

1. Superpixel Pooling

Here, we give the formal definition of superpixel pooling
(For simplicity, superscript denoting the level of the graph
or the feature map in the hierarchy is omitted):

1 H W
Vy=—o— Fijl(Si; =n) , 1
{S;; = n}] ZZJ: il(Si; =n) (M

where S € R¥”*W is the superpixel map, F € RH*W js
the grid feature map, V. e RI{S5=n}xC 5 vertex feature
(C is the channel dimension), and I(-) denotes the indicator
function. F;; and S;; represent value at 2D position (4, j)
in F and S, respectively. S;; stores the superpixel index
that pixel at position (¢, j) belongs to. V, is the n-th vertex
feature in V. Thus, the output vertex feature in superpixel
pooling comes from the average of features from superpixel
region defined by superpixel map.

In practice, since superpixel map S is pre-computed
from the image, the spatial size (H, W) of superpixel map
equals to the image size, which is usually larger than the
size of feature map F. Therefore, before applying super-
pixel pooling operaion, we use bilinear interpolation to up-
sample the feature map F to the same size of the superpixel
map. An alternative way is to downsample the superpixel
map to the same size with the feature map, which, however,
will make some small superpixels disappear. Thus, we up-
sample the feature map before using superpixel pooling.

The adjacency matrix E outputted by superpixel pooling
is defined as:

3p € {(4,5)ISi; = m}A
dq € {(i,5)Si; =n}) , 2

where both p and q are 2D positions. ||-,||; is Manhattan
distance between two positions. E,,,, denotes the adjacency

*The work was performed while Wenxuan Bao was a visiting student
at University of Rochester.

Algorithm 1 The Bottom-up Process

Input: {F'|l=1,..,L},S

Output: {G'|I=1,...,L},R
> // initialization

1. (VLE!) = Superpixelfooling(}'l,S)

> // from the bottom level to the top level

foril=1—L—1do
(Vi EN) P = EMGP(V! E') > EMGP
U = Superpixel_Pooling (F'**,S) > Projection
Vit = GConv(U UV, T+ H2:1 P")

end for

R = READOUT(V*)

Return {G' = (VL E!) |1 =1,...,L} U{R}

> S: superpixel

e NN

between the m-th superpixel and the n-th superpixel. Eq. 2
means that superpixels m and n are adjacent if and only
if there exists two positions in the respective superpixel re-
gions where such two positions are 8-connected (Manhattan
distance is less than or equal to 2).

2. Algorithm

We show the complete algorithm of the proposed model
for better reproducibility. The bottom-up process includ-
ing EMGP and Projection is show in Alg. 1. Details of
EMGP module are given in Alg. 2. Details of TDMP and
Re-projection are given in Alg. 3.

On line 8 in Alg. 3, Superpixel_Smear means copying
vertex features to the corresponding feature map locations
according to the superpixel map S. Formally, it is defined
by (the superscript [denoting hierarchy level is omitted for
simplicity):

3)

Thus, the feature at position (7, j) on the feature map Fis
obtained from the S;;-th feature of vertices U.

Algorithm 2 Expectation-Maximization Graph Pooling

Input: V!, E!

Output: (V1 E!+1), P!
1: VI = Uniform(V!, [VIH1))
2:. fork=1— K do

3: Péj = Z% exp (
Vit .— (Pl)Tvl
end for

> Initialization

7l
ViV 2
Ve

AN

L 7l+112
.plo._ 1 [[Vi=V; 7
D Py = Z—zexp(—‘giy)

. Bl o (P)TE!P!
8 Return (VI+1 E!+1) Pl

~

Algorithm 3 Top-down Message Passing and Re-projection

Input: {G'|I=1,..,L}U{R},S
Output: {F'|l=1,.. L}
> initialization
1: forl =L — 1do

I+1

2: 152]» = éexp (*W)
3: end for '

> from the top level to the bottom level
4: forl=L — 1do
5. Vii=GCon(VHFLUVLI+PY) > TDMP
6: Ul = Superpixell’ooling(f L S) > Re-projection
7: U = GConv(VIU UL T+ Hﬁczl PF)
8: Fl= Superpixeljmear(ﬁl, S)
9: end for

10: Return {F' |1 =1,...,L}

Huperpixc]

Pooling

]:H-l _ Ul+1

Figure 1: Illustration of the Projection module.

3. Projection and Re-projection

To illustrate how the projection and re-projection mod-
ules work in a more intuitive way, Fig. 1 and Fig. 2 give
more details of the algorithms in the projection module and
the re-projection module, respectively.

Quasi-bipartite graph

== b ——

Yz | — == | _ -

® O @& Lel\e o
;=<1 [\ @ @,
| Y | v 9
| . | GConv
| ! .
| v | Ul J| ol
Superpixel Superpixel
Pooling smear

Figure 2: Illustration of the Re-projection module.

4. Network Architecture on ADE20k dataset

In this section, we introduce how DGM is incorporated
into UPerNet, HRNetv2, DeepLabV3 in Sec. 5.4’s single-
task training of the paper. The backbone of all aforemen-
tioned networks is ResNet101 [3]. Similar with the archi-
tecture used in UPP task (Sec. 4 in the submitted paper),
multi-resolution feature maps are extracted from the back-
bone, then augmented by DGM, and the sum of the original
feature map and the re-projected feature map, ({ F; + Fi|l =
1,..., L}), is used for segmentation task. Thus, for simplic-
ity reason, we just introduce the multi-level grid features of
each network that are used as the input to DGM.

e UPerNet: We use the four levels of feature map out-
putted from the feature pyramid networks [5] in UPer-
Net as the input to DGM.

¢ HRNetv2: The four-scale output from stage 4’s High
Resolution Module is used as the input to DGM.

* DeepLabV3: Four-resolution output of atrous spatial
pyramid pooling (ASPP) module will be fed to DGM.

5. Qualitative Comparison on Broden+ Dataset

More examples of the qualitative comparison on Bro-
den+ dataset [2] is provided in Fig. 3. Since no pixel-level
texture ground-truth is provided in Broden+ dataset, we
only show the comparison with other state-of-the-art meth-
ods on texture segmentation in Fig. 4. Our model can pro-
duce more consistent texture segmentation (e.g., basin on
the first row and floor on the second and the third floor in
Fig. 4).

6. Grouping Visualization

Generally speaking, the goal of grouping visualization
is to map vertex index at the high-level graphs back to
the bottom-level superpixel. First, we define hard pooling

‘material

Figure 3:

More qualitative comparisons on Broden+
dataset. Differences of segmentation result between differ-
ent models are pointed out by red circle.

weights Q! € RIV' XV by

éj = H(Péj = mI?X(chj))) “4)
where P! is defined in Eq. 8 of the submitted paper. Q!
can be regarded as the one-hot version of P'. Vertex index
T! is defined by {T! = i|i = 1,...,|V!|}. Finally, we can
propagte vertex index from the graph at level [to level 1 by:

!
M = Superpixel_Smear((H Ql,)Tl,S) , (®

I'=1

Figure 4: More qualitative comparisons on Broden+ dataset
on texture segmentation.

where M is the superpixel map propagated from the graph
at level [. In visualization, we randomly assign a unique
color for each superpixel index for M.

In Fig. 5 of the submitted paper, we use MCG [6] as the
superpixel initialization at the bottom graph. Here, we show
more examples of grouping visualization in Fig. 5 where
SLIC [1] is used as superpixel extraction algorithm. The
first five rows are successful cases and the last row is a fail-
ure case where all nodes are grouped into one node on level
4.

7. Click Propagation

First, we denote the propagated click at level [as click
vector C! € RIV'l, where C! indicates the probability of
the ¢-th vertex being a positive click or a negative click. The
bottom level click C! is initialized by the user’s click (se-
lection on the superpixel), which is a one-hot vector:

(6)

cl - 1 wvertex i is clicked,
¢ 7 1 0 otherwise.

Remember that the goal of click propagation in interac-
tive segmentation is to augment the user’s click to related
areas. Therefore, at each level [, we use two steps to propa-
gate the user’s clicks.

Step 1: Propagation via grouping Given the lower-level
click C', we use the pooling weights P* to obtain the pre-
liminary propagated click C at level [4 1:

CcHl = (pPhtct . (7)

This step is very similar to EMGP (Eq. 2 in the submitted
paper), where we replace the vertices feature V! with the
click vector C'.

Step 2: Propagation via adjacency matrix Given the
preliminary click vector C!*1, we use the adjacency ma-
trix B! predicted in EMGP with self-loop to propagate

Figure 5: More examples of grouping visualization.

clicks at level [+ 1:
C'*!' = I+ E"HCH! . (8)

Since the adjacency matrix E can capture local relationships
between different vertices at the same level, step 2 can prop-
agate clicks to other vertices more locally compared with
step 1.

To visualize click propagation on the original image, we
use P! (see Eq. 8 in the submitted paper) to acquire the click
map N! € R¥*W (H x W is the image size) corresponding
to the click vector C':

!
N! = Superpia:el_Smear((H pl,)Cl,S))
=1

Finally, N is applied with min-max normalization for
visualization, where values from O to 1 are visualized via
black-to-white colors.

Figure 6: More examples of visualization of click propaga-
tion.

More examples of click propagation, including C! and
C!, can be seen in Fig. 6. Since we observed that clicks will
be propagated to larger contextual region (covering multiple
objects and background) starting from level 3, we only show
the visualization at level 1 and level 2.

8. Explainability with Grad-CAM

Following [7], the Grad-CAM G on level [graph’s n-th
vertex is defined by:

Gl =ReLU(Y a} Vi) (10)
k

where k denotes the channel dimension. The class specific
weights aéc is defined by:
1 ‘Vll 8ygt

N9 1
VI] 2 oV, (D

o, =

where 39 is the ground-truth class score outputted by the
scene classification layer (before softmax). In this experi-
ment, only the ground-truth scene label gt is used. How-
ever, it can be generalized to any class c.

level 1 , level 2 level 3 N level 4

building facade building facade

living room living room living room

kitchen

Figure 7: More examples of visualization of Grad-CAM.

_ Inorder to visualize G, we use reversed pooling weights
P! (see Eq. 8 in the original paper) to obtain Grad-CAM on
the original image H:

!
H = Superpimel_Smear((H f’l/)Gl,S) , (12)
=1

where H! denotes Grad-CAM on the original image ob-
tained from G!. Finally, in the visualization, min-max nor-
malization is applied on H to rescale the values in range of
0 to 1, visualized by blue-to-red colors.

More Grad-CAM visualizations can be seen in Fig. 7.
One interesting finding from the visualization is that for the
same image Grad-CAM only focuses on some vertices at
one or two levels of the hierarchy. For example, the Grad-
CAM visualization only focuses on the sofa on level 3’s
graph for the living room image on the 3rd row. We suspect
that Grad-CAM may detect discriminative region only at the
level when vertices can represent the discriminative object
(e.g., sofa) through grouping.

9. Comparison with state-of-the-art on UPP
task

We compare DGM with GCU in terms of object segmen-
tation, part segmentation, and scene classification tasks on
Broden+ dataset [2]. Following the setting in [4], we add
four GCU [4] modules on top of the ResNet [3] and con-
catenate the outputs. Following the hyperparameters used

Method Object Part Scene
mloU PA. mloU PA. Top-1 Acc.

ResNet [3]+GCU [4] 2249 72.71 2334 41.49 71.55

ResNet+DGM 24.76 75.15 31.26 50.55 71.87

HRNet [£] 2393 7471 31.79 51.12 70.73

HRNet+DGM 2519 7595 31.72 50.92 72.39

Table 1: Comparing with GCU, HRNet on Broden+ dataset
in terms of object segmentation, part segmentation, and
scene classification tasks.

in [4], each one of the four GCUs has (2,4, 8, 32) vertices
and output dimension is 256. The result in Tab. 1 shows that
DGM outperforms GCU.

Furthermore, we add DGM on top of HRNet [8] back-
bone instead of ResNet. The result is shown in Tab. 1. Our
method has similar performance with HRNet on part seg-
mentation task and achieves much better result on object
segmentation task and scene classification task.

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S.
Stisstrunk. Slic superpixels compared to state-of-the-art su-
perpixel methods. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 34(11):2274-2282, Nov 2012. 3

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and An-
tonio Torralba. Network dissection: Quantifying interpretabil-
ity of deep visual representations. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), July 2017.
2,5

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016. 2, 5

Yin Li and Abhinav Gupta. Beyond grids: Learning graph rep-
resentations for visual recognition. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
editors, Advances in Neural Information Processing Systems
31, pages 9225-9235. Curran Associates, Inc., 2018. 5
Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid net-
works for object detection. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), July 2017. 2

J. Pont-Tuset, P. Arbeldez, J. T. Barron, F. Marques, and J.
Malik. Multiscale combinatorial grouping for image segmen-
tation and object proposal generation. /EEE Transactions on
Pattern Analysis and Machine Intelligence, 39(1):128-140,
Jan 2017. 3

Phillip E. Pope, Soheil Kolouri, Mohammad Rostami,
Charles E. Martin, and Heiko Hoffmann. Explainability
methods for graph convolutional neural networks. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2019. 4

Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang,
Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui
Tan, Xinggang Wang, et al. Deep high-resolution represen-
tation learning for visual recognition. /EEE Transactions on
Pattern Analysis and Machine Intelligence, March 2020. 5

