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In this document, we supply additional evaluation, train-
ing, and implementation details, and provide a more details
on the ablation study. The stability of the generated images
is shown at hand of a short supplemental video.

1. Additional qualitative results
We included only few qualitative experiments in the

main document due to space constraints. Fig. 2 provides
additional examples of the image generation quality and the
accuracy of the associated keypoint annotations, inferred
via our explicit deformation field.

Moreover, Fig. 3 shows additional examples of the pose
estimation quality compared to using Cycle-GAN. Our ap-
proach produces much fewer miss classifications, for in-
stance, in the case of extreme bending positions of the
worm.

2. Ablation study details
The ablation study in the main document tests our com-

plete approach while removing of our core contributions in
terms of the PCK metric at threshold 15 pixels. The ad-
ditional metrics in Table 1 show that our contributions im-
prove consistently across different PCK thresholds. Each
of our contributions is significant with gains of 7 to 25 on
PCK-5 and 1 to 12 AUC points. Notably, using global affine
deformation is worse than without any deformation. This
may be because the affine network rotates the body of syn-
thetic fly to match the shape of real fly. However, the ro-
tation also affects the leg orientation, which leads to less
realistic poses. It is best to use global and local motion to-
gether (Ours).

We also experimented with using classical domain adap-
tation techiques, see details explained in Section 5. How-
ever, we could not make these methods developed for clas-
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Figure 1. Ablation study on DI . Without DI , small artifacts in
the generated (deformed) segmentation masks lead to unrealistic
images.

sification tasks work on the regression task of 2D pose es-
timation. Table 1 shows that the best ADDA variant does
not even outperform training on synthetic images. None of
the variants can translate between the large appearance and
pose and shape gaps between source and target. While fu-
ture work may improve on this, it shows that straight appli-
cations of existing domain adaptation techniques does not
suffice.

Moreover, Fig. 1 provides additional results comparing
the generated image quality with and without using DI .
Clear improvements are gained for the fish and Drosophila.
For instance, legs are properly superimposed on the ball,
while holes arise withoutDI (therefore, without end-to-end
training). No significant improvement could be observed on
the worm case due to its simplicity.
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Figure 2. Qualitative image generation results. Our approach can generate realistic and diverse poses, which are transferred across
domains faithfully. Our method works on all three tested animals, including the Drosophila dataset with superimposed legs that are on the
ball that has no correspondence in the source domain.

Metric
learning rate

decay
PI-PCK ↑
(5 pix)

PI-PCK ↑
(15 pix)

PI-AUC ↑
(4-45 pix)

Ours disabled 40.0 84.7 86.0
Ours with lr decay enabled 38.6 83.2 85.1
Ours w/o global deformation enabled 31.4 79.2 84.0
Ours w/o deformation enabled 18.5 64.9 74.9
Ours w/o local deformation enabled 13.1 57.4 73.8
Ours using vector field enabled 18.6 69.1 79.0
Synthetic n/a 19.8 67.9 75.75
ADDA n/a 7.63 55.5 66.3

Table 1. Detailed ablation study on Drosophila Melanogaster.
All model components contribute to the final reconstruction accu-
racy. The learning rate (lr) decay means using learning rate decay
during training the deformation and appearance transfer network.

3. Dataset sources and splits

The worm dataset stems from the OpenWorm initia-
tive [8, 7]. We used three videos after subsampling to 8x
speed. The OpenWorm videos are referred by strain type

and timestamp. We used the three videos specified in Ta-
ble 2, downloaded from YouTube at subsampled framerate
(8x speed compared to the original recording).

Strain Strain description Time stamp
OW940 zgIs128[P(dat-1)::alpha-Synuclein::YFP] 2014-03-14T13:39:36+01:00
OW940 zgIs128[P(dat-1)::alpha-Synuclein::YFP] 2014-03-06T09:11:51+01:00
OW939 zgIs113[P(dat-1)::alpha-Synuclein::YFP] 2014-02-22T14:13:49+01:00

Table 2. OpenWorm videos. Strain type and timestamp of the
used videos published by [8, 7].

The worm is tracked in each video to be roughly cen-
tered. The only transformation done is scaling the origi-
nal frames to resolution 128 × 128 pixels. We randomly
picked 100 frames of these three videos for test and then
picked 1000 frames out of all remaining frames for un-
paired training. We manually annotated every 10th frame
(100 frames) from the unpaired training examples with two
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Figure 3. Pose estimation result comparison. Training a pose estimator on our generated images yields accurate detections with far less
failures when compared to Cycle-GAN, the best performing baseline. The Drosophila case is most challenging as the legs are thin and
self-similar.

keypoints (head and tail) to train the supervised baseline,
and the entire test set (100 frames) for quantifying pose es-
timation accuracy.

For the zebrafish larva experiments, we used Video 3
(672246_file04.avi) published in the supplemen-
tal of [?] (biorxiv.org/content/10.1101/
672246v1.supplementary-material). We crop
the original video from 1920 × 1080 pixels to the region
with top left corner (500, 10) and bottom right (1290, 800),
and scale it to 128× 128 pixels. We deleted some repetitive
frames where the zebrafish is not moving to increase the
percentage of frames where zebrafish is bending. In total,
we retained 600 frames. We selected the last 100 frames
for test and 500 left for unpaired training. Besides the test
images, we also manually annotated every 5th (100 frames)
from the 500 training images as the training data for the
supervised baseline.

4. Training details
Training The Unpaired Image Translation Network.
We use the Adam optimizer with different initial learning
rates for different modules. For GI , DI , we set the learn-
ing rate to 2e−3. For GS , we set the learning rate to 2e−5
since a slight update will have a big impact on the defor-
mation field due to the integrating the spatial gradient in the
last layer of GS . We set the learning rate of DS to 1/10 the
one of GS , which balanced the influence of GS and DS in
our experiments. In case of Drosophila training, we trained
the networks for 30 epoch with fixed learning rate. We se-
lect the weights for GS and GI at 14th epoch. We also do
experiments with linearly decayed learning rate. We start
the decay the learning rate at epoch 50 and reduce it to 0
till epoch 100. It shows that very small learning rate will
introduce artifacts on the deformed mask and decrease the
performance a little. For fish and worm, we set the learning
rate ofGI andDI to 2e−4,GS to 2e−5, to account for the

672246_file04.avi
biorxiv.org/content/10.1101/672246v1.supplementary-material
biorxiv.org/content/10.1101/672246v1.supplementary-material


simpler setting of deforming from a single template image.
Additionally, we set learning rate for DS to be 1/100 to the
one of GS for fish to better balance the training of GS and
DS . We trained the networks for 100 epochs and selected
the weights for GS and GI at 70th epochs for worm and
100th for fish.

We set α to be 2e− 3 and β to be 2e− 2 in the regular-
ization terms, and we set λ to be 1e − 5 for fly and worm
and 1e− 4 for fish in LI .

The batch size of the image translation training is set to
4. An other important detail is the initialization of GS to
generate the identity mapping. We achieved that by initially
training GS solely on the regularization term, which pushes
it towards this state.

Training Pose Estimation Network. We use Adam opti-
mizer with initial learning rate of 2e−4. We train the pose
estimation network for 200 epochs and the learning rate
starts to linear decay after epoch 100, till epoch 200. In-
put images are augmented by random rotations, drawn uni-
formly from [−30◦, 30◦] for Drosophila.

5. Implementation details
Deformation representation. Directly modeling the de-
formation as vector field will make the transformation un-
stable and easily lose the semantic correspondence. For ex-
ample, a vector field permits coordinate crossing and dis-
connected areas, which leads to unstable training and diver-
gence. In order to preserve a connected grid topology, we
model our deformation close to the difformorphic transfor-
mation, which generates the deformation field as the inte-
gral of a velocity field. This leads to useful properties such
as invertibility and none crossing intersections [1]. How-
ever, it is in general expensive to compute the integral over
an axis, thus making it difficult to incorporate into deep net-
works. Instead of modeling a continuous velocity function,
we directly model our deformation field φ as the integral of
the spatial gradient of vector field, as proposed by Shu et al.
[9]. We write,

5 φx =
∂φ

∂x
5 φy =

∂φ

∂y
(1)

where x, y define the gradient directions along the image
axes. The φx and φy measure the difference of consecu-
tive pixels. By enforcing the difference to be positive (e.g.,
by using ReLU activation functions; we use HardTanh with
range (0, 0.1)), we avoid self-crossing and unwanted dis-
connected areas. For example, when φx and φy equals to 1,
the distance between the consecutive pixels is the the same.
If φx, φy > 1 , the distance will increase, otherwise, when
φx ,φy < 1, it will decrease.

The second module is the spatial integral layer, also the
last layer of deformation spatial gradient generator. This

layer sums the spatial gradients along the x and y directions
and produces the final deformation field,

φi,j = (

i∑
m=0

5φxm
,

j∑
n=0

5φyn
), (2)

where i, j is the pixel location. Since the u, v in gen-
eral position do not correspond to one exact pixel location
in the source image, we compute the output image using a
differentiable bilinear interpolation operation, as for spatial
transformers [4].

Shape Discriminator We utilize the 70 × 70 patchGAN
discriminator as our backbone structure [3] . The patch-
wise design makes the network focus on the local area of
the shape. Furthermore, if the shape between two domains
is extremely different, the patch-wise design prevents the
discriminator from converging too quickly. However, the
design also limits the network’s awareness of global shape
changes [2]. Thus, we add dilation to the second and the
third convolution layers of patchGAN. Those dilated lay-
ers enlarge the receptive field of our shape discriminator,
making it aware of bigger shape variation, giving a better
guidance to the generator.

Image Generator. We build our generator on the U-
Net architecture, which is proved to be effective in tasks
such as pixel-wise image translation and segmentation [6].
The generator contains several fully convolutional down-
sampling and up-sampling layers. The skip connections in
the generator help to propagate information directly from
input features to the output, which guarantee the preserva-
tion of spatial information in the output image.

Pose Estimator. We adopt the stacked hourglass human
pose estimation network to perform pose estimation on an-
imals [5]. The stacked hourglass network contains several
repeated bottom-up, top-down processing modules with in-
termediate supervision between them. A single stack hour-
glass module consists of several residual bottleneck layers
with max-pooling, following by the up-sampling layers and
skip connections. We used 2 hourglass modules in our ex-
periments. The pose estimation network is trained purely
on the animal data we generated; without pre-training and
manually annotated labels. The ground-truth poses come
from the annotations of synthetic animal models. The pose
invariant (PI) training is performed in all experiments la-
beled with PI training.

Pose Annotation. Drosophila has six limbs, each limb
has five joints, giving 30 2D keypoints that we aim to detect.
By using our image translation model, we generated 1500
images with annotation from the synthetic data. Each im-
age is in size 128× 128 pixels. The first hourglass network
is preceded with convolutional layers that reduce the input



image size from 128×128 to 32×32. The second hourglass
does not change the dimension. Thus, the network will out-
put a 30× 32× 32 tensor, which represents the probability
maps of 30 different joints locations. For training, we cre-
ate the ground truth label using a 2D Gaussian with mean
at the annotated keypoint and 0.5 on the diagonal of the co-
variance matrix. The training loss is the MSE between the
generated probability map and the ground truth label.

We annotated three keypoints on D. rerio and seven key-
points on C. elegans. We use the same network as for
Drosophila, but the output tensor adapted to the number of
keypoints, 3× 32× 32 and 7× 32× 32, respectively.

Domain Adaptation: ADDA We adapted the ADDA
pipeline to make it work for pose estimation problem. We
use two same hourglass networks with 2 sub-hourglass
stacks [5] as source and target domain feature extractor. The
feature extraction network takes an image and output a spa-
tial feature map (N×C×H×W ). C is 256 and H,W are 32
and 32 respectively if the size of input images is 128× 128.
We use 3 additional convolutional layers with BatchNorms
and ReLU to perform pose estimation from the learned fea-
ture maps. For the discriminator, we use the normal 3 layer
PatchGAN [3]. We follow the training pipeline of ADDA.
At first, we train the source feature extractor and pose esti-
mator for 200 epochs. Then, we fix their weights and start
the adversarial training for target feature extractor and the
discriminator which tries to distinguish between source and
target features. We set the learning rate to 2e-4 and start to
decay from 100 epoch till 200 epoch for both tasks. After
training, we select the weight of the 190th epoch, based on
the validation results.
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