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1. Supplementary Material
1.1. CNN

In Sec. 3.2 of the main text, we adopt a CNN architecture
similar to L2-Net [6] to extract feature maps for each view
patch. The detailed configuration of the network is listed in
Table 1. Note that the network input is of size 64×64 with
a single depth channel, and the final output is of size 8×8
with 128 feature channels.

# Layer Kernel Stride Padding

1 Conv - Norm - ReLU 3×3×32 2 1

2 Conv - Norm - ReLU 3×3×32 1 1

3 Conv - Norm - ReLU 3×3×64 2 1

4 Conv - Norm - ReLU 3×3×64 1 1

5 Conv - Norm - ReLU 3×3×128 2 1

6 Conv - Norm - ReLU 3×3×128 1 1

Table 1: CNN backbone for feature extraction of each view
patch. In the Kernel column, the first two numbers represent
the kernel size, and the third number is the number of output
feature channels.

1.2. Multi-view Rendering

In Fig. 1, we visualize the optimizable viewpoints after
training. We also show the viewpoints obtained by a cluster-
ing scheme similar to the one in [3]. Specifically, 150 spher-
ical coordinates (θ, φ) are randomly sampled on the hemi-
sphere where point normals reside, and then the k-medoids
clustering algorithm is applied to select three viewing direc-
tions. For each viewing direction, a virtual camera is placed
at distances of 0.3m, 0.6m, 0.9m to the points of interest,
and each rendered view patch is augmented with four in-
plane rotations.

As shown in Fig. 1, there are mainly two differences
between the hand-crafted rule and our method. First, the
hand-crafted rule places some viewpoints far from points
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of interest, while the learnt viewpoints have more concen-
trated distance range, indicating the relatively low impor-
tance of broader global context. Second, the hand-crafted
rule selects some dominant viewing directions through clus-
tering, whereas the learnt viewpoints have more distributed
viewing directions around the points of interests, which can
help to capture more local geometry variance. In sum, the
learnt viewpoints effectively balance the extent of context-
awareness and local details in extracted descriptors, chal-
lenging the design wisdom of hand-crafted rules.

Figure 1: Visualization of viewpoints obtained by a clus-
tering scheme and our method. The red spheres denote the
points of interest, and the pyramids represent virtual cam-
eras.

1.3. Multi-view Fusion

In Sec. 4.4 of the main text, we compared the pro-
posed soft-view pooling with alternative fusion approaches
including max-view pooling [3, 5, 4], Fuseption [7], and
NetVLAD [1]. Fuseption has two branches: in the first
branch, the feature maps of all the views are first chan-
nelwise concatenated together in a specific order and then
fed into a convolutional block; in the second branch, max-
pooling is applied to the inputs and the results are added to
the output of the first branch, serving as a shortcut connec-
tion. NetVLAD is a descriptor pooling method that sum-
marizes the residuals of each input w.r.t. several learnable
cluster centers. The number of cluster centers is a hyper
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parameter, which is set to eight in our experiments. The
network f is trained with the alternative fusion approaches,
while the other stages are kept unchanged. The descrip-
tor dimension d is set to 32, and the optimizable viewpoint
number n is set to 8.

In Fig. 2, we visualize the rendered multi-view inputs
to CNNs, extracted feature maps for each view, and fused
feature maps across views. It is observed that the CNN is
influenced by multi-view fusion for feature extraction. Be-
fore fusion, for soft-view pooling and NetVLAD, the fea-
ture maps of each view extracted by the CNN tend to have
more response, compared to max-view pooling and Fusep-
tion. After fusion, the feature maps produced by max-view
pooling and NetVLAD tend to have more high response
than soft-view pooling and Fuseption. Note that for each
location in the fused feature maps, max-view pooling only
selects the strongest input response across views and dis-
cards the rest, while our soft-view pooling collectively con-
siders all the inputs in an attentive manner for integration.

1.4. Comparisons with 3DSmoothNet

In Fig. 3, we visualize the color-coded local descriptors
for all the points in the point clouds. Specifically, we project
the high dimensional descriptors with PCA and keep the
first three components, which are color-coded. It is ob-
served that the descriptors of 3DSmoothNet and our method
are both geometry-aware. Particularly, our method is able
to capture more geometric changes in the point clouds (see
the highlighted wall, pillow and floor regions of the point
clouds in Fig. 3). In Fig. 4, we show additional geomet-
ric registration results of point cloud pairs, which further
demonstrate the above advantage of our method.

For the running time of 3DSmoothNet in Sec. 4.2 of the
main text, we observed some gap between our experiment
results (input prep: 39.4ms; inference: 0.2ms) and the per-
formance reported by the authors (input prep: 4.2ms; infer-
ence: 0.3ms). We used the source code1 of 3DSmoothNet
released by the authors, and the running time gap of input
preparation is likely due to the difference of hardware con-
figurations. In [2], they used a PC with an Intel Xeon E5-
1650, a 32GB RAM and an NVIDIA GeForce GTX 1080
GPU, while we used a PC with an Intel Core i7 @ 3.6GHz,
a 32GB RAM and an NVIDIA GTX 1080Ti GPU. Their in-
put preparation stage involving LRF computation and SDV
voxelization runs on CPU, which may be accelerated with
GPU for further improvement.
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Figure 2: Visualizations for multi-view fusion by different methods. The top part is for the red keypoint while the bottom part
is for the green keypoint. In each block, we visualize the view patches (depth) rendered with eight optimizable viewpoints
on the left. On the right are the corresponding convolutional feature maps (with channel indices {1, 2, 4, 8, 16, 32, 64, 128})
before fusion, and each row is for a specific view. Fused feature maps across views are placed on the bottom.
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Figure 3: Visualization of local descriptors for 3DSmoothNet and our method. The high dimensional descriptors are projected
with PCA to 3D space and color-coded. The highlighted regions show that our method can better capture geometric changes
in the point clouds.
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Figure 4: More geometric registration results with RANSAC for 3DSmoothNet and our method.
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